論文の概要: Architectural Exploration of Application-Specific Resonant SRAM Compute-in-Memory (rCiM)
- arxiv url: http://arxiv.org/abs/2411.09546v1
- Date: Thu, 14 Nov 2024 16:01:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:24.127647
- Title: Architectural Exploration of Application-Specific Resonant SRAM Compute-in-Memory (rCiM)
- Title(参考訳): アプリケーション特化共振SRAMコンピュート・イン・メモリ(rCiM)のアーキテクチャ探索
- Authors: Dhandeep Challagundla, Ignatius Bezzam, Riadul Islam,
- Abstract要約: 本稿では,多様な実装戦略を取り入れた設計のエネルギーと遅延を最適化する自動化ツールを提案する。
このツールは全てのベンチマークの平均エネルギー消費量を80.9%削減する。
- 参考スコア(独自算出の注目度): 1.0687104237121408
- License:
- Abstract: While general-purpose computing follows Von Neumann's architecture, the data movement between memory and processor elements dictates the processor's performance. The evolving compute-in-memory (CiM) paradigm tackles this issue by facilitating simultaneous processing and storage within static random-access memory (SRAM) elements. Numerous design decisions taken at different levels of hierarchy affect the figure of merits (FoMs) of SRAM, such as power, performance, area, and yield. The absence of a rapid assessment mechanism for the impact of changes at different hierarchy levels on global FoMs poses a challenge to accurately evaluating innovative SRAM designs. This paper presents an automation tool designed to optimize the energy and latency of SRAM designs incorporating diverse implementation strategies for executing logic operations within the SRAM. The tool structure allows easy comparison across different array topologies and various design strategies to result in energy-efficient implementations. Our study involves a comprehensive comparison of over 6900+ distinct design implementation strategies for EPFL combinational benchmark circuits on the energy-recycling resonant compute-in-memory (rCiM) architecture designed using TSMC 28 nm technology. When provided with a combinational circuit, the tool aims to generate an energy-efficient implementation strategy tailored to the specified input memory and latency constraints. The tool reduces 80.9% of energy consumption on average across all benchmarks while using the six-topology implementation compared to baseline implementation of single-macro topology by considering the parallel processing capability of rCiM cache size ranging from 4KB to 192KB.
- Abstract(参考訳): 汎用コンピューティングはフォン・ノイマンのアーキテクチャに従っているが、メモリとプロセッサ要素間のデータ移動はプロセッサの性能を規定している。
進化するCiM(Computer-in-Memory)パラダイムは、静的ランダムアクセスメモリ(SRAM)要素内の同時処理とストレージを容易にすることでこの問題に対処する。
階層の異なるレベルでの多くの設計決定は、パワー、性能、面積、収率などのSRAMのメリット(FoM)の数字に影響を及ぼす。
異なる階層レベルの変化がグローバルなFoMに与える影響に対する迅速な評価機構が欠如していることは、革新的なSRAM設計を正確に評価する上での課題である。
本稿では,SRAM内で論理演算を実行するための多種多様な実装戦略を取り入れた,SRAM設計のエネルギと遅延の最適化を目的とした自動化ツールを提案する。
ツール構造は、異なる配列トポロジと様々な設計戦略を簡単に比較することで、エネルギー効率のよい実装を実現している。
本研究は, TSMC 28nm技術を用いて設計したエネルギーリサイクル共振器(rCiM)アーキテクチャ上で, EPFL組合せベンチマーク回路の6900以上の設計実装戦略を網羅的に比較することを含む。
組み合わせ回路を備えると、指定された入力メモリと遅延制約に合わせたエネルギー効率のよい実装戦略を生成することが目的である。
このツールは4KBから192KBまでのrCiMキャッシュサイズの並列処理能力を考慮して、シングルマクロトポロジーのベースライン実装と比較して、6トポロジー実装を使用して、すべてのベンチマークの平均エネルギー消費量を80.9%削減する。
関連論文リスト
- AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation [48.82264764771652]
本稿では,畳み込みブロックと変圧器ブロックを組み合わせたハイブリッドアーキテクチャAsCANを紹介する。
AsCANは、認識、セグメンテーション、クラス条件画像生成など、さまざまなタスクをサポートしている。
次に、同じアーキテクチャをスケールして、大規模なテキスト・イメージタスクを解決し、最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-07T18:43:17Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - CHIME: Energy-Efficient STT-RAM-based Concurrent Hierarchical In-Memory Processing [1.5566524830295307]
本稿では、新しいPiC/PiMアーキテクチャ、Concurrent Hierarchical In-Memory Processing(CHIME)を紹介する。
CHIMEは、メモリ階層の複数のレベルにわたる不均一な計算ユニットを戦略的に組み込む。
実験の結果、最先端のビット線コンピューティングアプローチと比較して、CHIMEは57.95%と78.23%の大幅なスピードアップと省エネを実現していることがわかった。
論文 参考訳(メタデータ) (2024-07-29T01:17:54Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - MCUFormer: Deploying Vision Transformers on Microcontrollers with
Limited Memory [76.02294791513552]
我々はMCUFormerと呼ばれるハードウェア・アルゴリズムの協調最適化手法を提案し、メモリが極端に制限されたマイクロコントローラにビジョントランスフォーマーを配置する。
MCUFormerは320KBのメモリを持つ画像分類のためのImageNet上で73.62%のTop-1精度を実現している。
論文 参考訳(メタデータ) (2023-10-25T18:00:26Z) - IMBUE: In-Memory Boolean-to-CUrrent Inference ArchitecturE for Tsetlin
Machines [5.6634493664726495]
機械学習(ML)アプリケーションのためのインメモリコンピューティングは、並列性と局所性を活用するために計算を整理することで、フォン・ノイマンのボトルネックを修復する。
Resistive RAM(ReRAM)のような不揮発性メモリデバイスは、MLアプリケーションに有望なパフォーマンスを示す、統合的なスイッチングとストレージ機能を提供する。
本稿では,ReRAMトランジスタセルを用いたメモリ内Boolean-to-Current Inference Architecture (IMBUE)を提案する。
論文 参考訳(メタデータ) (2023-05-22T10:55:01Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Pex: Memory-efficient Microcontroller Deep Learning through Partial
Execution [11.336229510791481]
マイクロコントローラ深層学習のための新しい実行パラダイムについて論じる。
ニューラルネットワークの実行を変更して、メモリの完全なバッファーを作らないようにする。
これは演算子のプロパティを利用することで実現され、一度にインプット/アウトプットのごく一部を消費/生産することができる。
論文 参考訳(メタデータ) (2022-11-30T18:47:30Z) - Design Space Exploration of Dense and Sparse Mapping Schemes for RRAM
Architectures [2.788414791586367]
本稿では,高密度かつスパースなマッピング方式の利点と限界を定量化するために,拡張された設計空間探索手法を提案する。
また, 1-Transistor-1-Resistor (1T1R) に導入される典型的な非イデアルのトレードオフを定量化し, 定式化するケーススタディを提案する。
論文 参考訳(メタデータ) (2022-01-18T02:16:10Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - In-memory Implementation of On-chip Trainable and Scalable ANN for AI/ML
Applications [0.0]
本稿では,人工知能(AI)と機械学習(ML)アプリケーションを実現するための,ANNのためのインメモリコンピューティングアーキテクチャを提案する。
我々の新しいオンチップトレーニングとインメモリアーキテクチャは、プリチャージサイクル当たりの配列の複数行を同時にアクセスすることで、エネルギーコストを削減し、スループットを向上させる。
提案したアーキテクチャはIRISデータセットでトレーニングされ、以前の分類器と比較してMAC当たりのエネルギー効率が4,6倍に向上した。
論文 参考訳(メタデータ) (2020-05-19T15:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。