論文の概要: Expert Study on Interpretable Machine Learning Models with Missing Data
- arxiv url: http://arxiv.org/abs/2411.09591v1
- Date: Thu, 14 Nov 2024 17:02:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:00.099183
- Title: Expert Study on Interpretable Machine Learning Models with Missing Data
- Title(参考訳): 欠落データを用いた解釈可能な機械学習モデルに関する専門家研究
- Authors: Lena Stempfle, Arthur James, Julie Josse, Tobias Gauss, Fredrik D. Johansson,
- Abstract要約: Inherently Interpretable Machine Learning (IML)モデルは、臨床的意思決定に有用な洞察を提供するが、特徴が欠落している場合に課題に直面している。
フランス全国29のトラウマセンターから71名の臨床医を対象に,医療従事者とICMの相互作用について検討した。
- 参考スコア(独自算出の注目度): 10.637366819633302
- License:
- Abstract: Inherently interpretable machine learning (IML) models provide valuable insights for clinical decision-making but face challenges when features have missing values. Classical solutions like imputation or excluding incomplete records are often unsuitable in applications where values are missing at test time. In this work, we conducted a survey with 71 clinicians from 29 trauma centers across France, including 20 complete responses to study the interaction between medical professionals and IML applied to data with missing values. This provided valuable insights into how missing data is interpreted in clinical machine learning. We used the prediction of hemorrhagic shock as a concrete example to gauge the willingness and readiness of the participants to adopt IML models from three classes of methods. Our findings show that, while clinicians value interpretability and are familiar with common IML methods, classical imputation techniques often misalign with their intuition, and that models that natively handle missing values are preferred. These results emphasize the need to integrate clinical intuition into future IML models for better human-computer interaction.
- Abstract(参考訳): Inherently Interpretable Machine Learning (IML)モデルは、臨床的意思決定に有用な洞察を提供するが、特徴が欠落している場合に課題に直面している。
命令や不完全レコードの排除といった古典的な解決策は、テスト時に値が欠落しているアプリケーションでは不適当であることが多い。
本研究は、フランス全29の外傷センターから71名の臨床医を対象に、医療従事者とICMの相互作用を、欠落したデータに適用するための20の完全な回答を含む調査を行った。
これにより、臨床機械学習において欠落したデータがどのように解釈されるかについての貴重な洞察が得られた。
出血性ショックの予測を具体例として用いて,3種類の方法からIMLモデルを採用する参加者の意欲と準備性を評価した。
本研究は, 臨床医が解釈可能性を重視し, 一般的なIML法に精通しているにもかかわらず, 古典的計算法は直観に反することが多く, 自然に欠落した値を扱うモデルが好まれることを示した。
これらの結果は、人間とコンピュータの相互作用を改善するために、将来のMLモデルに臨床直観を統合する必要性を強調している。
関連論文リスト
- When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
大規模言語モデルの最後の隠れ状態からベクター表現が医療診断および予後に有効であることを示す。
我々は,異常な生理的データを表すため,ゼロショット設定の命令調整LDMに着目し,それらのユーティリティを特徴抽出器として評価する。
医学MLタスクでは生データの特徴が依然として有効であることが示唆されているが、ゼロショットLSM埋め込みは競争力のある結果を示している。
論文 参考訳(メタデータ) (2024-08-15T03:56:40Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
データ不足は機械学習(ML)モデリングの課題となる可能性がある。
現在のアプローチは、特徴計算とラベル予測に分類される。
本研究は、観測データに欠落した値でモデル化するコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T13:16:24Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - Context-dependent Explainability and Contestability for Trustworthy
Medical Artificial Intelligence: Misclassification Identification of
Morbidity Recognition Models in Preterm Infants [0.0]
説明可能なAI(XAI)は、エンドユーザーをサポートするAI推論を明確にすることで、この要件に対処することを目指している。
提案手法は,3つの主要な柱上に構築され,臨床コンテキストの潜時空間を利用して特徴セットを分解し,世界的説明の臨床的関連性を評価するとともに,局所的説明に基づく潜時空間類似性(LSS)を考察した。
論文 参考訳(メタデータ) (2022-12-17T07:59:09Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。