Expert Study on Interpretable Machine Learning Models with Missing Data
- URL: http://arxiv.org/abs/2411.09591v1
- Date: Thu, 14 Nov 2024 17:02:41 GMT
- Title: Expert Study on Interpretable Machine Learning Models with Missing Data
- Authors: Lena Stempfle, Arthur James, Julie Josse, Tobias Gauss, Fredrik D. Johansson,
- Abstract summary: Inherently interpretable machine learning (IML) models provide valuable insights for clinical decision-making but face challenges when features have missing values.
We conducted a survey with 71 clinicians from 29 trauma centers across France to study the interaction between medical professionals and IML applied to data with missing values.
- Score: 10.637366819633302
- License:
- Abstract: Inherently interpretable machine learning (IML) models provide valuable insights for clinical decision-making but face challenges when features have missing values. Classical solutions like imputation or excluding incomplete records are often unsuitable in applications where values are missing at test time. In this work, we conducted a survey with 71 clinicians from 29 trauma centers across France, including 20 complete responses to study the interaction between medical professionals and IML applied to data with missing values. This provided valuable insights into how missing data is interpreted in clinical machine learning. We used the prediction of hemorrhagic shock as a concrete example to gauge the willingness and readiness of the participants to adopt IML models from three classes of methods. Our findings show that, while clinicians value interpretability and are familiar with common IML methods, classical imputation techniques often misalign with their intuition, and that models that natively handle missing values are preferred. These results emphasize the need to integrate clinical intuition into future IML models for better human-computer interaction.
Related papers
- When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
We examine the effectiveness of vector representations from last hidden states of Large Language Models for medical diagnostics and prognostics.
We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluate their utilities as feature extractors.
Although findings suggest the raw data features still prevails in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results.
arXiv Detail & Related papers (2024-08-15T03:56:40Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
We introduce an innovative projections-based method that seamlessly integrates clinical expertise as domain constraints.
We measure the distance of corrected data from the constraints defining a healthy range of patient data, resulting in a unique predictive metric we term as "trust-scores"
We show an AUROC of 0.865 and a precision of 0.922, that surpasses conventional ML models without such projections.
arXiv Detail & Related papers (2023-08-21T15:14:49Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Context-dependent Explainability and Contestability for Trustworthy
Medical Artificial Intelligence: Misclassification Identification of
Morbidity Recognition Models in Preterm Infants [0.0]
Explainable AI (XAI) aims to address this requirement by clarifying AI reasoning to support the end users.
We built our methodology on three main pillars: decomposing the feature set by leveraging clinical context latent space, assessing the clinical association of global explanations, and Latent Space Similarity (LSS) based local explanations.
arXiv Detail & Related papers (2022-12-17T07:59:09Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.