Neural Operators Can Play Dynamic Stackelberg Games
- URL: http://arxiv.org/abs/2411.09644v1
- Date: Thu, 14 Nov 2024 18:12:06 GMT
- Title: Neural Operators Can Play Dynamic Stackelberg Games
- Authors: Guillermo Alvarez, Ibrahim Ekren, Anastasis Kratsios, Xuwei Yang,
- Abstract summary: Dynamic Stackelberg games are a broad class of two-player games in which the leader acts first, and the follower chooses a response strategy to the leader's strategy.
This paper addresses the issue by showing that the textitfollower's best-response operator can be approximately implemented by an textitattention-based neural operator
We show that the value of the Stackelberg game where the follower uses the approximate best-response operator approximates the value of the original Stackelberg game.
- Score: 9.058593115274336
- License:
- Abstract: Dynamic Stackelberg games are a broad class of two-player games in which the leader acts first, and the follower chooses a response strategy to the leader's strategy. Unfortunately, only stylized Stackelberg games are explicitly solvable since the follower's best-response operator (as a function of the control of the leader) is typically analytically intractable. This paper addresses this issue by showing that the \textit{follower's best-response operator} can be approximately implemented by an \textit{attention-based neural operator}, uniformly on compact subsets of adapted open-loop controls for the leader. We further show that the value of the Stackelberg game where the follower uses the approximate best-response operator approximates the value of the original Stackelberg game. Our main result is obtained using our universal approximation theorem for attention-based neural operators between spaces of square-integrable adapted stochastic processes, as well as stability results for a general class of Stackelberg games.
Related papers
- When Should a Leader Act Suboptimally? The Role of Inferability in Repeated Stackelberg Games [28.856644679990357]
We model the inferability problem using Stackelberg games with observations where a leader and a follower repeatedly interact.
For a variety of game settings, we show that the inferability gap is upper-bounded by a function of the number of interactions and theity level of the leader's strategy.
We identify a set of games where the leader's near-optimal strategy may suffer from a large inferability gap.
arXiv Detail & Related papers (2023-09-30T19:08:05Z) - Follower Agnostic Methods for Stackelberg Games [14.143502615941648]
We present an efficient algorithm to solve online Stackelberg games, featuring multiple followers, in a follower-agnostic manner.
Our approach works even when leader has no knowledge about the followers' utility functions or strategy space.
arXiv Detail & Related papers (2023-02-02T21:21:14Z) - Online Learning in Stackelberg Games with an Omniscient Follower [83.42564921330896]
We study the problem of online learning in a two-player decentralized cooperative Stackelberg game.
In each round, the leader first takes an action, followed by the follower who takes their action after observing the leader's move.
We show that depending on the reward structure, the existence of the omniscient follower may change the sample complexity drastically.
arXiv Detail & Related papers (2023-01-27T03:35:10Z) - Learning in Stackelberg Games with Non-myopic Agents [60.927889817803745]
We study Stackelberg games where a principal repeatedly interacts with a non-myopic long-lived agent, without knowing the agent's payoff function.
We provide a general framework that reduces learning in presence of non-myopic agents to robust bandit optimization in the presence of myopic agents.
arXiv Detail & Related papers (2022-08-19T15:49:30Z) - No-Regret Learning in Dynamic Stackelberg Games [31.001205916012307]
In a Stackelberg game, a leader commits to a randomized strategy, and a follower chooses their best strategy in response.
We consider an extension of a standard Stackelberg game, called a discrete-time dynamic Stackelberg game, that has an underlying state space that affects the leader's rewards and available strategies and evolves in a Markovian manner depending on both the leader and follower's selected strategies.
arXiv Detail & Related papers (2022-02-10T01:07:57Z) - Can Reinforcement Learning Find Stackelberg-Nash Equilibria in
General-Sum Markov Games with Myopic Followers? [156.5760265539888]
We study multi-player general-sum Markov games with one of the players designated as the leader and the other players regarded as followers.
For such a game, our goal is to find a Stackelberg-Nash equilibrium (SNE), which is a policy pair $(pi*, nu*)$.
We develop sample-efficient reinforcement learning (RL) algorithms for solving for an SNE in both online and offline settings.
arXiv Detail & Related papers (2021-12-27T05:41:14Z) - Stackelberg Actor-Critic: Game-Theoretic Reinforcement Learning
Algorithms [13.649494534428745]
hierarchical interaction between the actor and critic in actor-critic based reinforcement learning algorithms naturally lends itself to a game-theoretic interpretation.
We propose a meta-framework for Stackelberg actor-critic algorithms where the leader player follows the total derivative of its objective instead of the usual individual gradient.
Experiments on OpenAI gym environments show that Stackelberg actor-critic algorithms always perform at least as well and often significantly outperform the standard actor-critic algorithm counterparts.
arXiv Detail & Related papers (2021-09-25T06:18:41Z) - Adversarial Training as Stackelberg Game: An Unrolled Optimization
Approach [91.74682538906691]
Adversarial training has been shown to improve the generalization performance of deep learning models.
We propose Stackelberg Adversarial Training (SALT), which formulates adversarial training as a Stackelberg game.
arXiv Detail & Related papers (2021-04-11T00:44:57Z) - Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games [78.65798135008419]
It remains vastly open how to learn the Stackelberg equilibrium in general-sum games efficiently from samples.
This paper initiates the theoretical study of sample-efficient learning of the Stackelberg equilibrium in two-player turn-based general-sum games.
arXiv Detail & Related papers (2021-02-23T05:11:07Z) - Optimally Deceiving a Learning Leader in Stackelberg Games [123.14187606686006]
Recent results in the ML community have revealed that learning algorithms used to compute the optimal strategy for the leader to commit to in a Stackelberg game, are susceptible to manipulation by the follower.
This paper shows that it is always possible for the follower to compute (near-optimal) payoffs for various scenarios about the learning interaction between leader and follower.
arXiv Detail & Related papers (2020-06-11T16:18:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.