Reinforced Disentanglers on Random Unitary Circuits
- URL: http://arxiv.org/abs/2411.09784v1
- Date: Thu, 14 Nov 2024 19:51:26 GMT
- Title: Reinforced Disentanglers on Random Unitary Circuits
- Authors: Ning Bao, Keiichiro Furuya, Gun Suer,
- Abstract summary: We search for efficient disentanglers on random Clifford circuits of two-qubit gates arranged in a brick-wall pattern.
Disentanglers are defined as a set of projective measurements inserted between consecutive entangling layers.
- Score: 0.10923877073891444
- License:
- Abstract: We search for efficient disentanglers on random Clifford circuits of two-qubit gates arranged in a brick-wall pattern, using the proximal policy optimization (PPO) algorithm \cite{schulman2017proximalpolicyoptimizationalgorithms}. Disentanglers are defined as a set of projective measurements inserted between consecutive entangling layers. An efficient disentangler is a set of projective measurements that minimize the averaged von Neumann entropy of the final state with the least number of total projections possible. The problem is naturally amenable to reinforcement learning techniques by taking the binary matrix representing the projective measurements along the circuit as our state, and actions as bit flipping operations on this binary matrix that add or delete measurements at specified locations. We give rewards to our agent dependent on the averaged von Neumann entropy of the final state and the configuration of measurements, such that the agent learns the optimal policy that will take him from the initial state of no measurements to the optimal measurement state that minimizes the entanglement entropy. Our results indicate that the number of measurements required to disentangle a random quantum circuit is drastically less than the numerical results of measurement-induced phase transition papers. Additionally, the reinforcement learning procedure enables us to characterize the pattern of optimal disentanglers, which is not possible in the works of measurement-induced phase transitions.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Reducing Mid-Circuit Measurements via Probabilistic Circuits [0.13108652488669736]
Mid-circuit measurements and measurement-controlled gates are supported by an increasing number of quantum hardware platforms.
This work presents a static circuit optimization that can substitute some of these measurements with an equivalent circuit with randomized gate applications.
arXiv Detail & Related papers (2024-05-22T15:33:19Z) - Robust shallow shadows [0.251657752676152]
We present a robust shadow estimation protocol for wide classes of shallow measurement circuits.
We show how to estimate this directly from experimental data using tensor-network tools.
Under the practical constraints of current and near-term noisy quantum devices, our method maximally realizes the potential of shadow estimation with global rotations.
arXiv Detail & Related papers (2024-05-09T18:00:09Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - Characterization of variational quantum algorithms using free fermions [0.0]
We numerically study the interplay between these symmetries and the locality of the target state.
We find that the number of iterations to converge to the solution scales linearly with system size.
arXiv Detail & Related papers (2022-06-13T18:11:16Z) - Efficient quantum imaginary time evolution by drifting real time
evolution: an approach with low gate and measurement complexity [7.1064035036390925]
Quantum imaginary time evolution (QITE) is one of the promising candidates for finding eigenvalues and eigenstates of a Hamiltonian.
The original QITE proposal [Nat. Phys. 16, 205-210 ( 2020)], which approximates the imaginary time evolution by real time evolution, suffers from large circuit depth and measurements due to the size of the Pauli operator pool and Trotterization.
We propose a time-dependent drifting scheme inspired by thePhys. Rev. Lett 123, 070503 LiH], which randomly draws a Pauli term out of the approximated unitary operation generators of
arXiv Detail & Related papers (2022-03-21T16:41:27Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - MLE-guided parameter search for task loss minimization in neural
sequence modeling [83.83249536279239]
Neural autoregressive sequence models are used to generate sequences in a variety of natural language processing (NLP) tasks.
We propose maximum likelihood guided parameter search (MGS), which samples from a distribution over update directions that is a mixture of random search around the current parameters and around the maximum likelihood gradient.
Our experiments show that MGS is capable of optimizing sequence-level losses, with substantial reductions in repetition and non-termination in sequence completion, and similar improvements to those of minimum risk training in machine translation.
arXiv Detail & Related papers (2020-06-04T22:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.