A Unified Blockwise Measurement Design for Learning Quantum Channels and Lindbladians via Low-Rank Matrix Sensing
- URL: http://arxiv.org/abs/2501.14080v1
- Date: Thu, 23 Jan 2025 20:36:45 GMT
- Title: A Unified Blockwise Measurement Design for Learning Quantum Channels and Lindbladians via Low-Rank Matrix Sensing
- Authors: Quanjun Lang, Jianfeng Lu,
- Abstract summary: We propose a robust approach based on the matrix sensing techniques for quantum superoperator learning.<n>We provide theoretical guarantees for the identifiability and recovery of low-rank superoperators in the presence of noise.<n>Our approach employs alternating least squares (ALS) with acceleration for optimization in matrix sensing.
- Score: 5.266892492931388
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum superoperator learning is a pivotal task in quantum information science, enabling accurate reconstruction of unknown quantum operations from measurement data. We propose a robust approach based on the matrix sensing techniques for quantum superoperator learning that extends beyond the positive semidefinite case, encompassing both quantum channels and Lindbladians. We first introduce a randomized measurement design using a near-optimal number of measurements. By leveraging the restricted isometry property (RIP), we provide theoretical guarantees for the identifiability and recovery of low-rank superoperators in the presence of noise. Additionally, we propose a blockwise measurement design that restricts the tomography to the sub-blocks, significantly enhancing performance while maintaining a comparable scale of measurements. We also provide a performance guarantee for this setup. Our approach employs alternating least squares (ALS) with acceleration for optimization in matrix sensing. Numerical experiments validate the efficiency and scalability of the proposed methods.
Related papers
- Practical Application of the Quantum Carleman Lattice Boltzmann Method in Industrial CFD Simulations [44.99833362998488]
This work presents a practical numerical assessment of a hybrid quantum-classical approach to CFD based on the Lattice Boltzmann Method (LBM)
We evaluate this method on three benchmark cases featuring different boundary conditions, periodic, bounceback, and moving wall.
Our results confirm the validity of the approach, achieving median error fidelities on the order of $10-3$ and success probabilities sufficient for practical quantum state sampling.
arXiv Detail & Related papers (2025-04-17T15:41:48Z) - Near-Term Fermionic Simulation with Subspace Noise Tailored Quantum Error Mitigation [0.0]
We introduce the Subspace Noise Tailoring (SNT) algorithm, which efficiently combines Symmetry Verification (SV) and low bias of Probabilistic Error Cancellation (PEC) QEM techniques.
We study the performance of our method by simulating the Trotterized time evolution of the spin-1/2 Fermi-Hubbard model (FHM) using a variety of local fermion-to-qubit encodings.
arXiv Detail & Related papers (2025-03-14T18:20:54Z) - Quantum extreme learning machines for photonic entanglement witnessing [30.432877421232842]
Quantum extreme learning machines (QELMs) embody a powerful alternative for witnessing quantum entanglement.
We implement a photonic QELM that leverages the orbital angular momentum of photon pairs as an ancillary degree of freedom.
Unlike conventional methods, our approach does not require fine-tuning, precise calibration, or refined knowledge of the apparatus.
arXiv Detail & Related papers (2025-02-25T16:55:35Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Reinforced Disentanglers on Random Unitary Circuits [0.10923877073891444]
We search for efficient disentanglers on random Clifford circuits of two-qubit gates arranged in a brick-wall pattern.
Disentanglers are defined as a set of projective measurements inserted between consecutive entangling layers.
arXiv Detail & Related papers (2024-11-14T19:51:26Z) - Efficient inference of quantum system parameters by Approximate Bayesian Computation [0.0]
We propose the Approximate Bayesian Computation (ABC) algorithm, which evades likelihood by sampling from a library of measurement data.
We apply ABC to interpret photodetection click-patterns arising when probing in real time a two-level atom and an optomechanical system.
Our work demonstrates that fast parameter inference may be possible no matter the complexity of a quantum device and the measurement scheme involved.
arXiv Detail & Related papers (2024-06-30T15:10:05Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Quantum Speedups in Regret Analysis of Infinite Horizon Average-Reward Markov Decision Processes [32.07657827173262]
We introduce an innovative quantum framework for the agent's engagement with an unknown MDP.
We show that the quantum advantage in mean estimation leads to exponential advancements in regret guarantees for infinite horizon Reinforcement Learning.
arXiv Detail & Related papers (2023-10-18T03:17:51Z) - Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver [17.975555487972166]
Variational quantum algorithms are considered one of the most promising methods for obtaining near-term quantum advantages.
The roadblock to developing quantum algorithms with the measurement-based quantum computation scheme is resource cost.
We propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, called measurement-based Hamiltonian variational ansatz (MBHVA)
arXiv Detail & Related papers (2023-07-19T08:07:53Z) - Quantum Neural Estimation of Entropies [20.12693323453867]
entropy measures quantify the amount of information and correlation present in a quantum system.
We propose a variational quantum algorithm for estimating the von Neumann and R'enyi entropies, as well as the measured relative entropy and measured R'enyi relative entropy.
arXiv Detail & Related papers (2023-07-03T17:30:09Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Linear Ascending Metrological Algorithm [0.0]
Recent advances in quantum devices and novel quantum algorithms utilizing interference effects are opening new routes for overcoming the detrimental noise tyranny.
We devise the Linear Ascending Metrological Algorithm (LAMA) which offers a remarkable increase in precision in the demanding situation where a decohering quantum system is used to measure a continuously distributed variable.
Our findings demonstrate a quantum-metrological procedure capable of mitigating detrimental dephasing and relaxation effects.
arXiv Detail & Related papers (2021-03-24T12:40:43Z) - Semi-device-dependent blind quantum tomography [1.3075880857448061]
Current schemes typically require measurement devices for tomography that are a priori calibrated to high precision.
We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind' tomography scheme.
We numerically demonstrate that robust blind quantum tomography is possible in a practical setting inspired by an implementation of trapped ions.
arXiv Detail & Related papers (2020-06-04T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.