論文の概要: Fair Secretaries with Unfair Predictions
- arxiv url: http://arxiv.org/abs/2411.09854v2
- Date: Tue, 21 Jan 2025 02:52:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:14:52.993185
- Title: Fair Secretaries with Unfair Predictions
- Title(参考訳): 不公平な予測を伴う公正な秘書
- Authors: Eric Balkanski, Will Ma, Andreas Maggiori,
- Abstract要約: 予測値が少なくとも$maxOmega (1), 1 - O(epsilon)$倍の候補を受け入れることを約束しているにもかかわらず、アルゴリズムが最良の候補を受け入れる確率がゼロであることを示し、ここでは$epsilon$が予測誤差である。
私たちのアルゴリズムと分析は、既存の作業から分岐し、結果のいくつかを単純化/統一する、新たな"ペギング(pegging)"アイデアに基づいている。
- 参考スコア(独自算出の注目度): 12.756552522270198
- License:
- Abstract: Algorithms with predictions is a recent framework for decision-making under uncertainty that leverages the power of machine-learned predictions without making any assumption about their quality. The goal in this framework is for algorithms to achieve an improved performance when the predictions are accurate while maintaining acceptable guarantees when the predictions are erroneous. A serious concern with algorithms that use predictions is that these predictions can be biased and, as a result, cause the algorithm to make decisions that are deemed unfair. We show that this concern manifests itself in the classical secretary problem in the learning-augmented setting -- the state-of-the-art algorithm can have zero probability of accepting the best candidate, which we deem unfair, despite promising to accept a candidate whose expected value is at least $\max\{\Omega (1) , 1 - O(\epsilon)\}$ times the optimal value, where $\epsilon$ is the prediction error. We show how to preserve this promise while also guaranteeing to accept the best candidate with probability $\Omega(1)$. Our algorithm and analysis are based on a new "pegging" idea that diverges from existing works and simplifies/unifies some of their results. Finally, we extend to the $k$-secretary problem and complement our theoretical analysis with experiments.
- Abstract(参考訳): 予測を伴うアルゴリズムは、不確実性の下で意思決定を行うための最近のフレームワークであり、マシンが学習した予測のパワーを、その品質を仮定することなく活用する。
このフレームワークの目標は、予測が正確で、予測が誤りである場合に許容できる保証を維持しながら、アルゴリズムが改善されたパフォーマンスを達成することである。
予測を使用するアルゴリズムに対する深刻な懸念は、これらの予測が偏りがあり、結果としてアルゴリズムが不公平とみなされる決定を下す可能性があることである。
我々は、この懸念が古典的秘書問題の中に現れていることを示し、最先端のアルゴリズムは、期待値が少なくとも$\max\{\Omega (1) , 1 - O(\epsilon)\} の候補を受け入れることを約束しているにもかかわらず、最良の候補を受け入れる確率がゼロである。
確率$\Omega(1)$の最良の候補を受け入れることを保証しながら、この約束を守る方法を示す。
私たちのアルゴリズムと分析は、既存の作業から分岐し、結果のいくつかを単純化/統一する、新たな"ペギング(pegging)"アイデアに基づいている。
最後に、$k$-Secretary問題に拡張し、理論解析と実験を補完する。
関連論文リスト
- Mind the Gap: A Causal Perspective on Bias Amplification in Prediction & Decision-Making [58.06306331390586]
本稿では,閾値演算による予測値がS$変化の程度を測るマージン補数の概念を導入する。
適切な因果仮定の下では、予測スコア$S$に対する$X$の影響は、真の結果$Y$に対する$X$の影響に等しいことを示す。
論文 参考訳(メタデータ) (2024-05-24T11:22:19Z) - Non-clairvoyant Scheduling with Partial Predictions [17.387787159892287]
本稿では, 頑健性, 一貫性, 滑らかさの基準を満たす学習補助アルゴリズムを提案する。
また,予測数を制限するシナリオに固有の一貫性と滑らかさの新たなトレードオフも提示する。
論文 参考訳(メタデータ) (2024-05-02T05:29:22Z) - PAC Prediction Sets Under Label Shift [52.30074177997787]
予測セットは、個々のラベルではなくラベルのセットを予測することによって不確実性を捉える。
ラベルシフト設定においてPAC保証付き予測セットを構築するための新しいアルゴリズムを提案する。
提案手法を5つのデータセットで評価する。
論文 参考訳(メタデータ) (2023-10-19T17:57:57Z) - Zero-Regret Performative Prediction Under Inequality Constraints [5.513958040574729]
本稿では不等式制約下での性能予測について検討する。
我々は,ある程度の精度しか必要としない頑健な原始双対フレームワークを開発する。
次に、位置ファミリに対する適応的原始双対アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-22T04:54:26Z) - Sorting and Hypergraph Orientation under Uncertainty with Predictions [0.45880283710344055]
本研究では,不確実性下でのソートとハイパーグラフ配向のための学習強化アルゴリズムについて検討する。
我々のアルゴリズムは、予測なしで最良となる最悪の保証を維持しつつ、精度の高い予測性能を保証する。
論文 参考訳(メタデータ) (2023-05-16T07:52:08Z) - Streaming Algorithms for Learning with Experts: Deterministic Versus
Robust [62.98860182111096]
エキスパート問題を伴うオンライン学習では、アルゴリズムは、T$day(または時間)ごとに結果を予測する必要がある。
目標は最小限のコストで予測を行うことだ。
最良専門家が$M$の誤りを犯したとき、後悔する$R$を達成するような決定論的アルゴリズムに対して、$widetildeOmegaleft(fracnMRTright)$の空間下界を示す。
論文 参考訳(メタデータ) (2023-03-03T04:39:53Z) - Algorithms with Prediction Portfolios [23.703372221079306]
我々は、マッチング、ロードバランシング、非クレアボイラントスケジューリングなど、多くの基本的な問題に対する複数の予測器の使用について検討する。
これらの問題のそれぞれに対して、複数の予測器を利用する新しいアルゴリズムを導入し、その結果のパフォーマンスに限界を証明します。
論文 参考訳(メタデータ) (2022-10-22T12:58:07Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
オンラインの基本的な$k$-serverの問題を学習強化環境で研究する。
我々のアルゴリズムは任意の k に対してほぼ最適の一貫性-破壊性トレードオフを達成することを示す。
論文 参考訳(メタデータ) (2021-03-02T11:04:33Z) - Online Multivalid Learning: Means, Moments, and Prediction Intervals [16.75129633574157]
本稿では,様々な意味で「多値」な文脈予測手法を提案する。
得られた見積もりは、単に限界ではなく、$ Y$ラベルのさまざまな統計を正しく予測します。
我々のアルゴリズムは逆選択の例を扱うので、任意の点予測法の残差の統計量を予測するのに等しく使用できる。
論文 参考訳(メタデータ) (2021-01-05T19:08:11Z) - Malicious Experts versus the multiplicative weights algorithm in online
prediction [85.62472761361107]
2人の専門家と1人の予測者による予測問題を考える。
専門家の一人が正直で、各ラウンドで確率$mu$で正しい予測をしていると仮定する。
もう一つは悪意のあるもので、各ラウンドで真の結果を知り、予測者の損失を最大化するために予測を行う。
論文 参考訳(メタデータ) (2020-03-18T20:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。