DiffFNO: Diffusion Fourier Neural Operator
- URL: http://arxiv.org/abs/2411.09911v1
- Date: Fri, 15 Nov 2024 03:14:11 GMT
- Title: DiffFNO: Diffusion Fourier Neural Operator
- Authors: Xiaoyi Liu, Hao Tang,
- Abstract summary: We introduce DiffFNO, a novel diffusion framework for arbitrary-scale super-resolution strengthened by a Weighted Fourier Neural Operator (WFNO)
We show that DiffFNO achieves state-of-the-art (SOTA) results, outperforming existing methods across various scaling factors by a margin of 2 to 4 dB in PSNR.
Our approach sets a new standard in super-resolution, delivering both superior accuracy and computational efficiency.
- Score: 8.895165270489167
- License:
- Abstract: We introduce DiffFNO, a novel diffusion framework for arbitrary-scale super-resolution strengthened by a Weighted Fourier Neural Operator (WFNO). Mode Re-balancing in WFNO effectively captures critical frequency components, significantly improving the reconstruction of high-frequency image details that are crucial for super-resolution tasks. Gated Fusion Mechanism (GFM) adaptively complements WFNO's spectral features with spatial features from an Attention-based Neural Operator (AttnNO). This enhances the network's capability to capture both global structures and local details. Adaptive Time-Step (ATS) ODE solver, a deterministic sampling strategy, accelerates inference without sacrificing output quality by dynamically adjusting integration step sizes ATS. Extensive experiments demonstrate that DiffFNO achieves state-of-the-art (SOTA) results, outperforming existing methods across various scaling factors by a margin of 2 to 4 dB in PSNR, including those beyond the training distribution. It also achieves this at lower inference time. Our approach sets a new standard in super-resolution, delivering both superior accuracy and computational efficiency.
Related papers
- Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF)
Recent works demonstrate that the frequency regularization of Positional rendering can achieve promising results for few-shot NeRF.
We propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF.
arXiv Detail & Related papers (2024-10-23T13:05:26Z) - FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models [16.940023904740585]
We introduce an advanced acceleration technique that leverages the temporal redundancy inherent in diffusion models.
Reusing feature maps with high temporal similarity opens up a new opportunity to save computation resources without compromising output quality.
arXiv Detail & Related papers (2023-12-06T14:24:26Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Factorized Fourier Neural Operators [77.47313102926017]
The Factorized Fourier Neural Operator (F-FNO) is a learning-based method for simulating partial differential equations.
We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver.
arXiv Detail & Related papers (2021-11-27T03:34:13Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
We show that it is possible to improve the performance of a recently introduced efficient generator architecture solely with the application of our proposed loss functions.
We show that our losses' direct emphasis on the frequencies in Fourier-space significantly boosts the perceptual image quality.
The trained generator achieves comparable results with and is 2.4x and 48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow respectively.
arXiv Detail & Related papers (2021-06-01T20:34:52Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.