論文の概要: Physics-informed Machine Learning for Battery Pack Thermal Management
- arxiv url: http://arxiv.org/abs/2411.09915v1
- Date: Fri, 15 Nov 2024 03:23:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:42.688578
- Title: Physics-informed Machine Learning for Battery Pack Thermal Management
- Title(参考訳): 電池パック熱管理のための物理インフォームド機械学習
- Authors: Zheng Liu, Yuan Jiang, Yumeng Li, Pingfeng Wang,
- Abstract要約: 電池セルを熱ペーストで囲む冷板を上下に配置した21700バッテリパック間接液体冷却システムを開発した。
冷媒流量が高いため、蓄電池が熱源であるのに対し、冷板は一定の温度境界とみなすことができる。
物理インフォームド畳み込みニューラルネットワークは、電池パックの温度分布を推定する代理モデルとして機能した。
- 参考スコア(独自算出の注目度): 8.202484782960967
- License:
- Abstract: With the popularity of electric vehicles, the demand for lithium-ion batteries is increasing. Temperature significantly influences the performance and safety of batteries. Battery thermal management systems can effectively control the temperature of batteries; therefore, the performance and safety can be ensured. However, the development process of battery thermal management systems is time-consuming and costly due to the extensive training dataset needed by data-driven models requiring enormous computational costs for finite element analysis. Therefore, a new approach to constructing surrogate models is needed in the era of AI. Physics-informed machine learning enforces the physical laws in surrogate models, making it the perfect candidate for estimating battery pack temperature distribution. In this study, we first developed a 21700 battery pack indirect liquid cooling system with cold plates on the top and bottom with thermal paste surrounding the battery cells. Then, the simplified finite element model was built based on experiment results. Due to the high coolant flow rate, the cold plates can be considered as constant temperature boundaries, while battery cells are the heat sources. The physics-informed convolutional neural network served as a surrogate model to estimate the temperature distribution of the battery pack. The loss function was constructed considering the heat conduction equation based on the finite difference method. The physics-informed loss function helped the convergence of the training process with less data. As a result, the physics-informed convolutional neural network showed more than 15 percents improvement in accuracy compared to the data-driven method with the same training data.
- Abstract(参考訳): 電気自動車の普及に伴い、リチウムイオン電池の需要が高まっている。
温度は電池の性能と安全性に大きな影響を及ぼす。
電池の熱管理システムは、バッテリの温度を効果的に制御できるため、性能と安全性を確保することができる。
しかし、有限要素解析に膨大な計算コストを必要とするデータ駆動モデルで必要とされる広範なトレーニングデータセットのために、電池熱管理システムの開発プロセスは時間がかかりコストがかかる。
したがって、AIの時代には代理モデルを構築するための新しいアプローチが必要である。
物理インフォームド機械学習は、サロゲートモデルの物理法則を強制し、バッテリーパックの温度分布を推定するのに最適な候補となる。
本研究では,電池セルを熱ペーストで囲む冷板を上下に配置した21700個の間接液体冷却システムを開発した。
そして,実験結果に基づいて簡易有限要素モデルを構築した。
冷媒流量が高いため、蓄電池が熱源であるのに対し、冷板は一定の温度境界とみなすことができる。
物理インフォームド畳み込みニューラルネットワークは、電池パックの温度分布を推定する代理モデルとして機能した。
有限差分法に基づく熱伝導式を考慮した損失関数を構築した。
物理インフォームド・ロス関数は、少ないデータでトレーニングプロセスの収束を助けた。
その結果、物理インフォームド畳み込みニューラルネットワークは、同じトレーニングデータを持つデータ駆動方式と比較して、精度が15%以上向上した。
関連論文リスト
- Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More [0.0]
電池は複雑な非線形時効を持つ動的システムである。
このチュートリアルは、第一原理、機械学習、ハイブリッドバッテリーモデルの概要から始まる。
機械学習モデルの課題を強調し、ハイブリッドモデリングアプローチにおける物理の組み入れを動機づける。
論文 参考訳(メタデータ) (2024-04-05T12:05:20Z) - Autonomous Payload Thermal Control [55.2480439325792]
小さな衛星では、熱制御装置、科学機器、電子部品のスペースは少ない。
深部強化学習を用いた自律型熱制御ツールを提案する。
提案するフレームワークは,運用範囲の温度を維持するためにペイロード処理能力の制御を学べる。
論文 参考訳(メタデータ) (2023-07-28T09:40:19Z) - LiFe-net: Data-driven Modelling of Time-dependent Temperatures and
Charging Statistics Of Tesla's LiFePo4 EV Battery [0.0]
バッテリーパックの極端な温度は、寿命と出力に影響を与える可能性がある。
電池内部からデータ測定を得ることは困難である。
本稿では,データ駆動型サロゲートモデル(LiFe-net)を提案する。
論文 参考訳(メタデータ) (2022-12-16T10:59:03Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
本稿では,少数の電圧/電流サンプルから同時に老化状態を推定できるトランスフォーマーに基づく新しいディープラーニングアーキテクチャを提案する。
実験の結果, 学習モデルは様々な複雑さの入力電流分布に有効であり, 広範囲の劣化レベルに対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-06-01T15:31:06Z) - Battery Cloud with Advanced Algorithms [1.7205106391379026]
バッテリクラウドまたはクラウドバッテリ管理システムは、クラウド計算パワーとデータストレージを活用して、バッテリ安全性、パフォーマンス、経済性を改善する。
この研究は、電気自動車やエネルギー貯蔵システムから計測されたバッテリーデータを収集するバッテリクラウドを提示する。
論文 参考訳(メタデータ) (2022-03-07T21:56:17Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
低接続性は、温度計を低温で動作させるためのリソースであることに気付きました。
位置測定により達成可能な精度を,エネルギー測定に対応する最適値と比較する。
論文 参考訳(メタデータ) (2021-04-21T17:19:42Z) - Battery Model Calibration with Deep Reinforcement Learning [5.004835203025507]
バッテリーモデルのキャリブレーションパラメータを確実かつ効率的に推測するための強化学習ベースのフレームワークを実装します。
このフレームワークは、観測から現実ギャップを補うために、計算モデルパラメータのリアルタイム推論を可能にする。
論文 参考訳(メタデータ) (2020-12-07T19:26:08Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
リチウムイオン電池のためのDeep Forward Networkを構築し,その性能評価を行った。
本研究の貢献はリチウムイオン電池用ディープフォワードネットワークの構築手法とその性能評価である。
論文 参考訳(メタデータ) (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。