論文の概要: Adaptive Physics-Guided Neural Network
- arxiv url: http://arxiv.org/abs/2411.10064v1
- Date: Fri, 15 Nov 2024 09:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:13.142269
- Title: Adaptive Physics-Guided Neural Network
- Title(参考訳): 適応型物理誘導ニューラルネットワーク
- Authors: David Shulman, Itai Dattner,
- Abstract要約: 本稿では,画像データから品質特性を予測するための適応型物理誘導ニューラルネットワーク(APGNN)フレームワークを提案する。
APGNNは、データ駆動と物理インフォームド予測を適応的にバランスさせ、異なる環境におけるモデルの精度と堅牢性を高める。
実世界の実験では、APGNNは多様な熱画像データセットにおいて一貫して優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces an adaptive physics-guided neural network (APGNN) framework for predicting quality attributes from image data by integrating physical laws into deep learning models. The APGNN adaptively balances data-driven and physics-informed predictions, enhancing model accuracy and robustness across different environments. Our approach is evaluated on both synthetic and real-world datasets, with comparisons to conventional data-driven models such as ResNet. For the synthetic data, 2D domains were generated using three distinct governing equations: the diffusion equation, the advection-diffusion equation, and the Poisson equation. Non-linear transformations were applied to these domains to emulate complex physical processes in image form. In real-world experiments, the APGNN consistently demonstrated superior performance in the diverse thermal image dataset. On the cucumber dataset, characterized by low material diversity and controlled conditions, APGNN and PGNN showed similar performance, both outperforming the data-driven ResNet. However, in the more complex thermal dataset, particularly for outdoor materials with higher environmental variability, APGNN outperformed both PGNN and ResNet by dynamically adjusting its reliance on physics-based versus data-driven insights. This adaptability allowed APGNN to maintain robust performance across structured, low-variability settings and more heterogeneous scenarios. These findings underscore the potential of adaptive physics-guided learning to integrate physical constraints effectively, even in challenging real-world contexts with diverse environmental conditions.
- Abstract(参考訳): 本稿では、物理法則をディープラーニングモデルに統合することにより、画像データから品質特性を予測する適応物理誘導ニューラルネットワーク(APGNN)フレームワークを提案する。
APGNNは、データ駆動と物理インフォームド予測を適応的にバランスさせ、異なる環境におけるモデルの精度と堅牢性を高める。
提案手法は,ResNetなどの従来のデータ駆動モデルと比較して,合成データセットと実世界のデータセットの両方で評価する。
合成データに対して,拡散方程式,対流拡散方程式,ポアソン方程式の3つの異なる支配方程式を用いて2次元領域を作成した。
これらの領域に非線形変換を適用し、複雑な物理過程を画像形式でエミュレートした。
実世界の実験では、APGNNは多様な熱画像データセットにおいて一貫して優れた性能を示した。
APGNNとPGNNはいずれもデータ駆動型ResNetよりも優れた性能を示した。
しかし、より複雑な熱データセット、特に環境変動性の高い屋外材料において、APGNNはPGNNとResNetの両方で、物理ベースとデータ駆動の洞察への依存を動的に調整することで性能を向上した。
この適応性により、APGNNは構造化された低変数設定とより異種なシナリオで堅牢なパフォーマンスを維持することができた。
これらの知見は、様々な環境条件で現実世界の状況に挑戦しても、適応的な物理誘導学習が物理的制約を効果的に統合する可能性を強調している。
関連論文リスト
- Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
本稿では, 織物のメソスケールシミュレーションの代用として, リカレントニューラルネットワーク(RNN)モデルを提案する。
平均場モデルは、弾塑性挙動を表す包括的データセットを生成する。
シミュレーションでは、任意の6次元ひずみヒストリーを用いて、ランダムウォーキング時の応力を原課題として、循環荷重条件を目標課題として予測する。
論文 参考訳(メタデータ) (2023-11-22T14:47:54Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
弾性インバージョンのための新しいUNetベースニューラルネットワークモデル(El-UNet)を開発した。
完全接続された物理インフォームドニューラルネットワークと比較して,El-UNetによる精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T23:35:03Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
本研究では,実環境下でのフルフィールド変位と大域力データからモデルのキャリブレーションを行うためのPINNを提案する。
拡張PINNは、実験的な1次元データと合成フルフィールド変位データの両方から材料パラメータを識別できることを実証した。
論文 参考訳(メタデータ) (2022-12-15T11:01:32Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Thermodynamically Consistent Machine-Learned Internal State Variable
Approach for Data-Driven Modeling of Path-Dependent Materials [0.76146285961466]
ディープニューラルネットワークやリカレントニューラルネットワーク(RNN)などのデータ駆動機械学習モデルが,現実的な代替手段になりつつある。
本研究では,計測可能な材料に基づく経路依存材料に対する,機械学習型ロバスト性駆動型モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-01T23:25:08Z) - On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization [0.0]
モデルベースのフィードフォワードコントローラの性能は、典型的には逆システム力学モデルの精度によって制限される。
本稿では,特定物理パラメータを用いた正規化手法を提案する。
実生活の産業用リニアモーターで検証され、追跡精度と外挿の精度が向上する。
論文 参考訳(メタデータ) (2022-01-28T12:51:25Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
グラフニューラルネットワーク(GNN)における適応接続サンプリングのための統一的なフレームワークを提案する。
提案フレームワークは,深部GNNの過度なスムース化や過度に適合する傾向を緩和するだけでなく,グラフ解析タスクにおけるGNNによる不確実性の学習を可能にする。
論文 参考訳(メタデータ) (2020-06-07T07:06:35Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。