論文の概要: Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
- arxiv url: http://arxiv.org/abs/2503.18309v2
- Date: Wed, 16 Apr 2025 07:24:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 20:12:21.016915
- Title: Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
- Title(参考訳): 非定常高次元力学系に対する効率的な変換ガウス過程状態空間モデル
- Authors: Zhidi Lin, Ying Li, Feng Yin, Juan Maroñas, Alexandre H. Thiéry,
- Abstract要約: 本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
- 参考スコア(独自算出の注目度): 49.819436680336786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian process state-space models (GPSSMs) offer a principled framework for learning and inference in nonlinear dynamical systems with uncertainty quantification. However, existing GPSSMs are limited by the use of multiple independent stationary Gaussian processes (GPs), leading to prohibitive computational and parametric complexity in high-dimensional settings and restricted modeling capacity for non-stationary dynamics. To address these challenges, we propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems. Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics while significantly reducing model complexity. For the inference of the implicit process, we develop a variational inference algorithm that jointly approximates the posterior over the underlying GP and the neural network parameters defining the normalizing flows. To avoid explicit variational parameterization of the latent states, we further incorporate the ensemble Kalman filter (EnKF) into the variational framework, enabling accurate and efficient state estimation. Extensive empirical evaluations on synthetic and real-world datasets demonstrate the superior performance of our ETGPSSM in system dynamics learning, high-dimensional state estimation, and time-series forecasting, outperforming existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
- Abstract(参考訳): ガウス過程状態空間モデル(GPSSM)は、不確実な定量化を伴う非線形力学系における学習と推論のための原則的なフレームワークを提供する。
しかし、既存のGPSSMは複数の独立定常ガウス過程(GP)を用いることで制限されており、高次元設定における計算とパラメトリックの計算が禁止され、非定常力学のモデリング能力が制限される。
これらの課題に対処するために、高次元非定常力学系のスケーラブルで柔軟なモデリングのための効率的な変換されたガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは入力依存の正規化フローと1つの共有GPを統合し、複雑な非定常遷移ダイナミクスを捉える前に表現的な暗黙のプロセスを生成するとともに、モデルの複雑さを著しく低減する。
暗黙的プロセスの推論のために、基底GP上の後部と正規化フローを定義するニューラルネットワークパラメータを共同で近似する変分推論アルゴリズムを開発した。
潜伏状態の明示的な変分パラメータ化を回避するため,アンサンブルカルマンフィルタ(EnKF)を変分フレームワークに組み込むことにより,高精度かつ効率的な状態推定が可能となる。
システムダイナミクス学習,高次元状態推定,時系列予測におけるETGPSSMの優れた性能を示し,既存のGPSSMとニューラルネットワークベースのSSMを計算効率と精度で上回る結果を得た。
関連論文リスト
- Recursive Gaussian Process State Space Model [4.572915072234487]
動作領域とGPハイパーパラメータの両方に適応可能な新しいオンラインGPSSM法を提案する。
ポイントを誘導するオンライン選択アルゴリズムは、情報的基準に基づいて開発され、軽量な学習を実現する。
合成データセットと実世界のデータセットの総合的な評価は,提案手法の精度,計算効率,適応性を示す。
論文 参考訳(メタデータ) (2024-11-22T02:22:59Z) - Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
我々は,高次元潜在状態空間における遷移関数を効率的にモデル化するために,効率的な変換ガウス過程(ETGP)をGPSSMに統合することを提案する。
また,パラメータ数および計算複雑性の観点から,既存の手法を超越した変分推論アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-09-03T04:34:33Z) - Towards Flexibility and Interpretability of Gaussian Process State-Space
Model [4.75409418039844]
我々はTGPSSMと呼ばれる新しい確率的状態空間モデルを提案する。
TGPSSMはパラメトリック正規化フローを利用して、標準GPSSMのGPプリエントを豊かにする。
本稿では,潜在状態の変動分布に柔軟かつ最適な構造を提供するスケーラブルな変分推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-21T01:26:26Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。