Resonant stroboscopic Rydberg dressing: electron-motion coupling and multi-body interactions
- URL: http://arxiv.org/abs/2411.10090v1
- Date: Fri, 15 Nov 2024 10:31:09 GMT
- Title: Resonant stroboscopic Rydberg dressing: electron-motion coupling and multi-body interactions
- Authors: Chris Nill, Sylvain de Léséleuc, Christian Groß, Igor Lesanovsky,
- Abstract summary: Rydberg dressing traditionally refers to a technique where interactions between cold atoms are imprinted through the far off-resonant continuous-wave excitation of high-lying Rydberg states.
We investigate two dressing protocols, in which Rydberg atoms are resonantly excited in a stroboscopic fashion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg dressing traditionally refers to a technique where interactions between cold atoms are imprinted through the far off-resonant continuous-wave excitation of high-lying Rydberg states. Dipolar interactions between these electronic states are then translated into effective interactions among ground state atoms. Motivated by recent experiments, we investigate two dressing protocols, in which Rydberg atoms are resonantly excited in a stroboscopic fashion. The first one is non-adiabatic, meaning Rydberg states are excited by fast pulses. In this case, mechanical forces among Rydberg atoms result in electron-motion coupling, which generates effective multi-body interactions. In the second, adiabatic protocol, Rydberg states are excited by smoothly varying laser pulses. We show that also in this protocol substantial multi-body interactions emerge.
Related papers
- Cavity-assisted quantum transduction between superconducting qubits and trapped atomic particles mediated by Rydberg levels [49.1574468325115]
We present an approach for transferring quantum states from superconducting qubits to the internal states of trapped atoms or ions.
For experimentally demonstrated parameters of interaction strengths, dissipation, and dephasing, our scheme achieves fidelities above 95%.
arXiv Detail & Related papers (2025-01-06T18:28:18Z) - Fast entangling gates for Rydberg atoms via resonant dipole-dipole interaction [0.0]
We introduce a novel scheme for entangling gates using four atomic levels per atom: a ground state qubit and two Rydberg states.
We show that this interaction can mediate controlled-Z gates that are faster and less sensitive to Rydberg decay than state-of-the-art Rydberg gates.
arXiv Detail & Related papers (2024-11-07T19:00:08Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement
and Jahn-Teller Effect [0.0]
Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators.
We explore electrostatic dipolar interactions that emerge, when two atoms are simultaneously excited to high-lying electronic states, so-called Rydberg states.
This highlights the potential of Rydberg tweezer arrays for the study of molecular phenomena at exaggerated length scales.
arXiv Detail & Related papers (2023-03-15T18:32:42Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Ultrafast energy exchange between two single Rydberg atoms on the
nanosecond timescale [0.0]
We observe an interaction-driven energy exchange occuring in a timescale of nanoseconds, two orders of magnitude faster than in any previous work with Rydberg atoms.
This opens the path for quantum simulation and computation operating at the speed-limit set by dipole-dipole interactions with this ultrafast Rydberg platform.
arXiv Detail & Related papers (2021-11-24T07:56:52Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Fast spin squeezing by distance-selective long-range interactions with
Rydberg molecule dressing [1.611694953275748]
We propose a Rydberg molecule dressing scheme to create strong and long-ranged interactions.
This is achieved through laser-state atoms off-resonantly to an attractive molecular curve of two interacting Rydberg atoms.
arXiv Detail & Related papers (2021-10-25T07:16:26Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Self-induced transparency in warm and strongly interacting Rydberg gases [1.433758865948252]
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect.
In this regime, self-induced transparency emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction.
arXiv Detail & Related papers (2020-04-28T16:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.