論文の概要: Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach
- arxiv url: http://arxiv.org/abs/2411.10096v1
- Date: Fri, 15 Nov 2024 10:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:57.743437
- Title: Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach
- Title(参考訳): 非線形分散制御のためのニューラルポート-ハミルトンモデル:非拘束パラメトリゼーションアプローチ
- Authors: Muhammad Zakwan, Giancarlo Ferrari-Trecate,
- Abstract要約: ニューラルネットワーク(NN)は、優れたパフォーマンスをもたらす制御ポリシのパラメータ化に利用することができる。
NNの小さな入力変更に対する感度は、クローズドループシステムの不安定化のリスクを引き起こす。
これらの問題に対処するために、ポート・ハミルトンシステムのフレームワークを活用して、連続時間分散制御ポリシーを設計する。
提案する分散コントローラの有効性は,非ホロノミック移動ロボットのコンセンサス制御によって実証される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The control of large-scale cyber-physical systems requires optimal distributed policies relying solely on limited communication with neighboring agents. However, computing stabilizing controllers for nonlinear systems while optimizing complex costs remains a significant challenge. Neural Networks (NNs), known for their expressivity, can be leveraged to parametrize control policies that yield good performance. However, NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system. Many existing approaches enforce constraints on the controllers' parameter space to guarantee closed-loop stability, leading to computationally expensive optimization procedures. To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies for nonlinear systems that guarantee closed-loop stability and finite $\mathcal{L}_2$ or incremental $\mathcal{L}_2$ gains, independent of the optimzation parameters of the controllers. This eliminates the need to constrain parameters during optimization, allowing the use of standard techniques such as gradient-based methods. Additionally, we discuss discretization schemes that preserve the dissipation properties of these controllers for implementation on embedded systems. The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots subject to collision avoidance and averaged voltage regulation with weighted power sharing in DC microgrids.
- Abstract(参考訳): 大規模サイバー物理システムの制御には、近隣エージェントとの限られた通信のみに依存する最適な分散ポリシーが必要である。
しかし、非線形システムの安定化コントローラを最適化する一方で、複雑なコストを最適化することは大きな課題である。
ニューラルネットワーク(NN)は、その表現力で知られ、優れたパフォーマンスをもたらす制御ポリシのパラメータ化に利用することができる。
しかし、NNの小さな入力変化に対する感度は、クローズドループシステムの不安定化のリスクをもたらす。
既存の多くのアプローチは、閉ループ安定性を保証するためにコントローラのパラメータ空間に制約を課し、計算的に高価な最適化手順を導いた。
これらの問題に対処するために、ポート・ハミルトンシステムの枠組みを利用して、閉ループ安定性と有限$\mathcal{L}_2$またはインクリメンタル$\mathcal{L}_2$ゲインを保証する非線形システムの連続時間分散制御ポリシーを設計する。
これにより、最適化中にパラメータを制約する必要がなくなり、勾配ベースのメソッドのような標準的なテクニックが利用できるようになる。
さらに,これらの制御器の散逸特性を保存し,組込みシステム上で実装するための離散化方式についても論じる。
提案手法の有効性は,直流マイクログリッドにおける衝突回避および平均電圧制御を考慮した非ホロノミック移動ロボットのコンセンサス制御により実証される。
関連論文リスト
- Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
クローズドループ安定性保証による性能ブースティング問題に対処する。
本手法は,安定な非線形システムのための性能ブースティング制御器のニューラルネットワーククラスを任意に学習することを可能にする。
論文 参考訳(メタデータ) (2024-05-01T21:11:29Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Robust stabilization of polytopic systems via fast and reliable neural
network-based approximations [2.2299983745857896]
ポリトピック不確実性を有する線形システムに対する従来の安定化制御器の高速かつ信頼性の高いニューラルネットワーク(NN)に基づく近似設計について検討する。
訓練された修正線形単位(ReLU)に基づく近似が従来の制御系に取って代わる場合、線形不確かさシステムの閉ループ安定性と性能を証明する。
論文 参考訳(メタデータ) (2022-04-27T21:58:07Z) - Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems [0.0]
本稿では,パラメータ最適化における閉ループ安定性を保証するニューラルSLS(Neur-SLS)手法を提案する。
本稿では,Recurrent Equilibrium Networks (RENs) に基づく最近のDeep Neural Network (DNN) モデルを用いて,非線形安定演算子の豊富なクラスについて学習する。
論文 参考訳(メタデータ) (2022-03-22T15:22:31Z) - Learning Stochastic Parametric Differentiable Predictive Control
Policies [2.042924346801313]
本稿では、ニューラルネットワークポリシーの教師なし学習のための、パラメトリック微分可能予測制御(SP-DPC)と呼ばれるスケーラブルな代替手法を提案する。
SP-DPCはパラメトリック制約最適制御問題に対する決定論的近似として定式化される。
閉ループ制約と確率満足度に関するSP-DPC法を用いて学習したポリシーに関する理論的確率的保証を提供する。
論文 参考訳(メタデータ) (2022-03-02T22:46:32Z) - Reliably-stabilizing piecewise-affine neural network controllers [5.203329540700177]
モデル予測制御(MPC)ポリシーのニューラルネットワーク(NN)近似に影響を与える一般的な問題は、NNベースのコントローラの動作の下でクローズドループシステムの安定性を評価するための分析ツールがないことである。
本稿では、そのような制御器の性能を定量化したり、与えられたMPCスキームの望ましい特性を保持する最小の複雑性NNを設計するための一般的な手順を提案する。
論文 参考訳(メタデータ) (2021-11-13T20:01:43Z) - Stable Online Control of Linear Time-Varying Systems [49.41696101740271]
COCO-LQは、大規模なLTVシステムの入出力安定性を保証する効率的なオンライン制御アルゴリズムである。
COCO-LQの性能を実証実験とパワーシステム周波数制御の両例で実証した。
論文 参考訳(メタデータ) (2021-04-29T06:18:49Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
線形2次制御器(LQR)としても知られる2次コストモデルの下で線形制御器を研究する。
楕円形不確実性集合内の全ての系を安定化させる制御器を構成する2つの異なる半定値プログラム(SDP)を提案する。
高い確率で安定化コントローラを迅速に識別できる効率的なデータ依存アルゴリズムであるtextsceXplorationを提案する。
論文 参考訳(メタデータ) (2020-06-19T08:58:57Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。