論文の概要: Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems
- arxiv url: http://arxiv.org/abs/2203.11812v1
- Date: Tue, 22 Mar 2022 15:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 17:41:52.513837
- Title: Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems
- Title(参考訳): ニューラルシステムレベル合成:非線形システムの全ての安定化ポリシーを学習する
- Authors: Luca Furieri, Clara Luc\'ia Galimberti, Giancarlo Ferrari-Trecate
- Abstract要約: 本稿では,パラメータ最適化における閉ループ安定性を保証するニューラルSLS(Neur-SLS)手法を提案する。
本稿では,Recurrent Equilibrium Networks (RENs) に基づく最近のDeep Neural Network (DNN) モデルを用いて,非線形安定演算子の豊富なクラスについて学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of designing stabilizing control policies for
nonlinear systems in discrete-time, while minimizing an arbitrary cost
function. When the system is linear and the cost is convex, the System Level
Synthesis (SLS) approach offers an exact solution based on convex programming.
Beyond this case, a globally optimal solution cannot be found in a tractable
way, in general. In this paper, we develop a parametrization of all and only
the control policies stabilizing a given time-varying nonlinear system in terms
of the combined effect of 1) a strongly stabilizing base controller and 2) a
stable SLS operator to be freely designed. Based on this result, we propose a
Neural SLS (Neur-SLS) approach guaranteeing closed-loop stability during and
after parameter optimization, without requiring any constraints to be
satisfied. We exploit recent Deep Neural Network (DNN) models based on
Recurrent Equilibrium Networks (RENs) to learn over a rich class of nonlinear
stable operators, and demonstrate the effectiveness of the proposed approach in
numerical examples.
- Abstract(参考訳): 非線形システムの制御ポリシーを離散時間に安定化する問題に対処し,任意のコスト関数を最小化する。
システムが線形でコストが凸である場合、システムレベル合成(SLS)アプローチは凸プログラミングに基づく正確なソリューションを提供する。
この場合以外にも、大域的最適解は、一般に、トラクタブルな方法では見つからない。
本稿では, 与えられた時間変化非線形系を安定化させる制御ポリシのみを, 複合効果の観点からパラメトリゼーションする。
1)強力な安定化ベースコントローラ及び
2)安定なSLS演算子を自由に設計する。
この結果に基づいて,パラメータ最適化の前後における閉ループ安定性を保証するニューラルSLS(Neur-SLS)手法を提案する。
本稿では,Recurrent Equilibrium Networks (RENs) に基づく最近のDeep Neural Network (DNN) モデルを用いて,非線形安定作用素の豊富なクラスについて学習し,数値例で提案手法の有効性を実証する。
関連論文リスト
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
ニューラルネットワーク(NN)は、優れたパフォーマンスをもたらす制御ポリシのパラメータ化に利用することができる。
NNの小さな入力変更に対する感度は、クローズドループシステムの不安定化のリスクを引き起こす。
これらの問題に対処するために、ポート・ハミルトンシステムのフレームワークを活用して、連続時間分散制御ポリシーを設計する。
提案する分散コントローラの有効性は,非ホロノミック移動ロボットのコンセンサス制御によって実証される。
論文 参考訳(メタデータ) (2024-11-15T10:44:29Z) - Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
クローズドループ安定性保証による性能ブースティング問題に対処する。
本手法は,安定な非線形システムのための性能ブースティング制御器のニューラルネットワーククラスを任意に学習することを可能にする。
論文 参考訳(メタデータ) (2024-05-01T21:11:29Z) - Learning Over Contracting and Lipschitz Closed-Loops for
Partially-Observed Nonlinear Systems (Extended Version) [1.2430809884830318]
本稿では非線形な部分観測力学系に対する学習に基づく制御のためのポリシーパラメータ化を提案する。
結果のYoula-RENパラメータ化は自動的に安定性(収縮)とユーザチューニング可能な堅牢性(Lipschitz)を満足することを示した。
We found that the Youla-REN are also like to existing learning-based and optimal control method, also ensure stability and exhibiting improve robustness to adversarial disturbances。
論文 参考訳(メタデータ) (2023-04-12T23:55:56Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
形式的安定性を保証するモデルに基づく強化学習フレームワークを提案する。
提案手法は,特徴表現を用いて信頼区間までシステムダイナミクスを学習する。
我々は、KCRLが、基礎となる未知のシステムとの有限数の相互作用において安定化ポリシーを学ぶことが保証されていることを示す。
論文 参考訳(メタデータ) (2022-06-03T17:27:04Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System [4.3012765978447565]
線形力学系に対する非線形出力フィードバックコントローラのパラメータ化を提案する。
提案手法は, 制約を満たすことなく, 部分的に観測可能な線形力学系の閉ループ安定性を保証する。
論文 参考訳(メタデータ) (2021-12-08T10:43:47Z) - Youla-REN: Learning Nonlinear Feedback Policies with Robust Stability
Guarantees [5.71097144710995]
本稿では,最近開発されたニューラルネットワークアーキテクチャ上に構築された不確実性システムに対する非線形制御器のパラメータ化について述べる。
提案したフレームワークは、安定性の保証、すなわち、検索空間におけるすべてのポリシーが、契約(グローバルに指数関数的に安定した)クローズドループシステムをもたらすことを保証する。
論文 参考訳(メタデータ) (2021-12-02T13:52:37Z) - On the Stability of Nonlinear Receding Horizon Control: A Geometric
Perspective [72.7951562665449]
産業における非線形回帰制御(RHC)戦略の広範な採用には30年以上がかかる。
本稿では,グローバル・ジオメトリの役割を理解するための第一歩として,グローバル・ベース・コントロールの役割について述べる。
論文 参考訳(メタデータ) (2021-03-27T22:59:37Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
線形2次制御器(LQR)としても知られる2次コストモデルの下で線形制御器を研究する。
楕円形不確実性集合内の全ての系を安定化させる制御器を構成する2つの異なる半定値プログラム(SDP)を提案する。
高い確率で安定化コントローラを迅速に識別できる効率的なデータ依存アルゴリズムであるtextsceXplorationを提案する。
論文 参考訳(メタデータ) (2020-06-19T08:58:57Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。