論文の概要: Compound-QA: A Benchmark for Evaluating LLMs on Compound Questions
- arxiv url: http://arxiv.org/abs/2411.10163v1
- Date: Fri, 15 Nov 2024 13:12:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:31.590036
- Title: Compound-QA: A Benchmark for Evaluating LLMs on Compound Questions
- Title(参考訳): 複合QA:複合質問に対するLCMの評価ベンチマーク
- Authors: Yutao Hou, Yajing Luo, Zhiwen Ruan, Hongru Wang, Weifeng Ge, Yun Chen, Guanhua Chen,
- Abstract要約: 本稿では、複合質問合成(CQ-Syn)を導入し、複合QAベンチマークを作成する。
このベンチマークは、プロプライエタリな大規模言語モデルにアノテートされた既存のQAデータセットに由来する。
LLM能力は、理解、推論、知識を含む3次元の観点で評価する。
- 参考スコア(独自算出の注目度): 10.783827859678892
- License:
- Abstract: Large language models (LLMs) demonstrate remarkable performance across various tasks, prompting researchers to develop diverse evaluation benchmarks. However, existing benchmarks typically measure the ability of LLMs to respond to individual questions, neglecting the complex interactions in real-world applications. In this paper, we introduce Compound Question Synthesis (CQ-Syn) to create the Compound-QA benchmark, focusing on compound questions with multiple sub-questions. This benchmark is derived from existing QA datasets, annotated with proprietary LLMs and verified by humans for accuracy. It encompasses five categories: Factual-Statement, Cause-and-Effect, Hypothetical-Analysis, Comparison-and-Selection, and Evaluation-and-Suggestion. It evaluates the LLM capability in terms of three dimensions including understanding, reasoning, and knowledge. Our assessment of eight open-source LLMs using Compound-QA reveals distinct patterns in their responses to compound questions, which are significantly poorer than those to non-compound questions. Additionally, we investigate various methods to enhance LLMs performance on compound questions. The results indicate that these approaches significantly improve the models' comprehension and reasoning abilities on compound questions.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々なタスクで顕著な性能を示し、研究者は様々な評価ベンチマークを開発する。
しかし、既存のベンチマークは、現実のアプリケーションにおける複雑な相互作用を無視して、個々の質問に答えるLLMの能力を測定するのが一般的である。
本稿では、複合質問合成(CQ-Syn)を導入し、複数のサブクエストを伴う複合質問に焦点をあてて、複合QAベンチマークを作成する。
このベンチマークは、既存のQAデータセットから派生したもので、プロプライエタリなLCMで注釈付けされ、正確さで人間によって検証されている。
5つのカテゴリ(Factual-Statement, cause-and-Effect, hypothetical-Analysis, Comparison-and-Selection, Evaluation-and-Suggestion)がある。
LLM能力は、理解、推論、知識を含む3次元の観点で評価する。
コンプレックスQAを用いた8つのオープンソースLCMの評価では,複合質問に対する応答パターンが明らかになり,非複合質問に対する応答パターンよりも格段に劣ることがわかった。
さらに,複合質問に対するLLMの性能向上のための様々な手法について検討する。
その結果,これらのアプローチは複合質問に対するモデルの理解と推論能力を大幅に改善することが示された。
関連論文リスト
- AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - AHP-Powered LLM Reasoning for Multi-Criteria Evaluation of Open-Ended Responses [26.850344968677582]
本研究では,大規模言語モデルを用いたオープンエンド質問に対する回答評価手法を提案する。
また,ChatGPT-3.5-turbo と GPT-4 の2つのデータセットについて実験を行った。
以上の結果から,本研究のアプローチは4つの基準線よりも人間の判断と密接に一致していることが示唆された。
論文 参考訳(メタデータ) (2024-10-02T05:22:07Z) - Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
対話型質問応答(CQA)の文脈における大規模言語モデル(LLM)を評価するための新しいベンチマークであるInsCoQAを提案する。
InsCoQAは、百科事典スタイルの教育内容から派生したもので、複数の文書から手続き的ガイダンスを抽出し、解釈し、正確に要約する能力のモデルを評価する。
また,LLM支援型評価器であるInsEvalを提案する。
論文 参考訳(メタデータ) (2024-10-01T09:10:00Z) - LINKAGE: Listwise Ranking among Varied-Quality References for Non-Factoid QA Evaluation via LLMs [61.57691505683534]
非F (Non-Factoid) Question Answering (QA) は多種多様な潜在的回答と客観的基準により評価が困難である。
大規模言語モデル (LLM) は、様々なNLPタスクにおいて魅力的な性能を持つため、NFQAの評価に利用されてきた。
提案手法は,LLMを用いて基準回答のランク付けを行う新しい評価手法であるNFQAの評価手法を提案する。
論文 参考訳(メタデータ) (2024-09-23T06:42:21Z) - LOVA3: Learning to Visual Question Answering, Asking and Assessment [61.51687164769517]
質問への回答、質問、評価は、世界を理解し、知識を得るのに不可欠な3つの人間の特性である。
現在のMLLM(Multimodal Large Language Models)は主に質問応答に焦点を当てており、質問や評価スキルの可能性を無視することが多い。
LOVA3は、"Learning tO Visual Question Answering, Asking and Assessment"と名付けられた革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-05-23T18:21:59Z) - Can multiple-choice questions really be useful in detecting the abilities of LLMs? [15.756543037102256]
大規模言語モデル(LLM)の評価には,MCQ(Multiple-choice Question)が広く用いられている。
課題と評価方法のミスアライメントは,MCQの有効性の思慮深い分析を必要とする。
質問応答(QA)データセットを中国語と英語の2言語で評価した。
論文 参考訳(メタデータ) (2024-03-26T14:43:48Z) - Let LLMs Take on the Latest Challenges! A Chinese Dynamic Question
Answering Benchmark [69.3415799675046]
我々は,中国インターネットの最新ニュースに関連する質問対を含む中国の動的QAベンチマークCDQAを紹介する。
我々は、人間とモデルを組み合わせたパイプラインを通じて高品質なデータを得る。
また,CDQA上での中国LLMの評価と分析を行った。
論文 参考訳(メタデータ) (2024-02-29T15:22:13Z) - Cofca: A Step-Wise Counterfactual Multi-hop QA benchmark [39.64489055580211]
実データと反実データからなる新しい評価ベンチマークであるCofCA(Step-wise Counterfactual benchmark)を導入する。
実験の結果,ウィキペディアをベースとした事実データと反事実データの間には,既存のベンチマークにおけるデータ汚染問題を推定し,大きな性能差があることが判明した。
論文 参考訳(メタデータ) (2024-02-19T08:12:30Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。