The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2411.10175v1
- Date: Fri, 15 Nov 2024 13:21:26 GMT
- Title: The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning
- Authors: Moritz Schneider, Robert Krug, Narunas Vaskevicius, Luigi Palmieri, Joschka Boedecker,
- Abstract summary: Visual Reinforcement Learning methods often require extensive amounts of data.
Model-based RL (MBRL) offers a potential solution with efficient data utilization through planning.
MBRL lacks generalization capabilities for real-world tasks.
- Score: 8.36595587335589
- License:
- Abstract: Visual Reinforcement Learning (RL) methods often require extensive amounts of data. As opposed to model-free RL, model-based RL (MBRL) offers a potential solution with efficient data utilization through planning. Additionally, RL lacks generalization capabilities for real-world tasks. Prior work has shown that incorporating pre-trained visual representations (PVRs) enhances sample efficiency and generalization. While PVRs have been extensively studied in the context of model-free RL, their potential in MBRL remains largely unexplored. In this paper, we benchmark a set of PVRs on challenging control tasks in a model-based RL setting. We investigate the data efficiency, generalization capabilities, and the impact of different properties of PVRs on the performance of model-based agents. Our results, perhaps surprisingly, reveal that for MBRL current PVRs are not more sample efficient than learning representations from scratch, and that they do not generalize better to out-of-distribution (OOD) settings. To explain this, we analyze the quality of the trained dynamics model. Furthermore, we show that data diversity and network architecture are the most important contributors to OOD generalization performance.
Related papers
- BECAUSE: Bilinear Causal Representation for Generalizable Offline Model-based Reinforcement Learning [39.090104460303415]
offline model-based reinforcement learning (MBRL) enhances data efficiency by utilizing pre-collected datasets to learn models and policies.
This paper first identifies the primary source of this mismatch comes from the underlying confounders present in offline data.
We introduce textbfBilintextbfEar textbfCAUSal rtextbfEpresentation(BECAUSE), an algorithm to capture causal representation for both states.
arXiv Detail & Related papers (2024-07-15T17:59:23Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Light-weight probing of unsupervised representations for Reinforcement Learning [20.638410483549706]
We study whether linear probing can be a proxy evaluation task for the quality of unsupervised RL representation.
We show that the probing tasks are strongly rank correlated with the downstream RL performance on the Atari100k Benchmark.
This provides a more efficient method for exploring the space of pretraining algorithms and identifying promising pretraining recipes.
arXiv Detail & Related papers (2022-08-25T21:08:01Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Mask-based Latent Reconstruction for Reinforcement Learning [58.43247393611453]
Mask-based Latent Reconstruction (MLR) is proposed to predict the complete state representations in the latent space from the observations with spatially and temporally masked pixels.
Extensive experiments show that our MLR significantly improves the sample efficiency in deep reinforcement learning.
arXiv Detail & Related papers (2022-01-28T13:07:11Z) - Sample-efficient Reinforcement Learning Representation Learning with
Curiosity Contrastive Forward Dynamics Model [17.41484483119774]
This paper considers a learning framework for Curiosity Contrastive Forward Dynamics Model (CCFDM) in achieving a more sample-efficient reinforcement learning (RL)
CCFDM incorporates a forward dynamics model (FDM) and performs contrastive learning to train its deep convolutional neural network-based image encoder (IE)
During training, CCFDM provides intrinsic rewards, produced based on FDM prediction error, encourages the curiosity of the RL agent to improve exploration.
arXiv Detail & Related papers (2021-03-15T10:08:52Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.