論文の概要: Static network structure cannot stabilize cooperation among Large Language Model agents
- arxiv url: http://arxiv.org/abs/2411.10294v1
- Date: Fri, 15 Nov 2024 15:52:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:23.040272
- Title: Static network structure cannot stabilize cooperation among Large Language Model agents
- Title(参考訳): 大規模言語モデルエージェント間の協調を安定化できない静的ネットワーク構造
- Authors: Jin Han, Balaraju Battu, Ivan Romić, Talal Rahwan, Petter Holme,
- Abstract要約: 大規模言語モデル(LLM)は、人間の社会的行動のモデル化にますます利用されている。
本研究の目的は,LLMとヒトの協調行動における並列性を明らかにすることである。
- 参考スコア(独自算出の注目度): 6.868298200380496
- License:
- Abstract: Large language models (LLMs) are increasingly used to model human social behavior, with recent research exploring their ability to simulate social dynamics. Here, we test whether LLMs mirror human behavior in social dilemmas, where individual and collective interests conflict. Humans generally cooperate more than expected in laboratory settings, showing less cooperation in well-mixed populations but more in fixed networks. In contrast, LLMs tend to exhibit greater cooperation in well-mixed settings. This raises a key question: Are LLMs about to emulate human behavior in cooperative dilemmas on networks? In this study, we examine networked interactions where agents repeatedly engage in the Prisoner's Dilemma within both well-mixed and structured network configurations, aiming to identify parallels in cooperative behavior between LLMs and humans. Our findings indicate critical distinctions: while humans tend to cooperate more within structured networks, LLMs display increased cooperation mainly in well-mixed environments, with limited adjustment to networked contexts. Notably, LLM cooperation also varies across model types, illustrating the complexities of replicating human-like social adaptability in artificial agents. These results highlight a crucial gap: LLMs struggle to emulate the nuanced, adaptive social strategies humans deploy in fixed networks. Unlike human participants, LLMs do not alter their cooperative behavior in response to network structures or evolving social contexts, missing the reciprocity norms that humans adaptively employ. This limitation points to a fundamental need in future LLM design -- to integrate a deeper comprehension of social norms, enabling more authentic modeling of human-like cooperation and adaptability in networked environments.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人間の社会的行動のモデル化にますます使われており、最近の研究では、社会的ダイナミクスをシミュレートする能力について研究されている。
ここでは、個人と集団の関心が対立する社会ジレンマにおいて、LLMが人間の行動を反映するかどうかをテストする。
人間は一般的に実験室の環境では予想以上に協力し、よく混ざった集団では協力が弱く、固定されたネットワークでは協力がより少ない。
対照的に、LLMはよく混在した環境でより大きな協調を示す傾向にある。
LLMはネットワーク上の協調ジレンマで人間の行動をエミュレートしようとしているのか?
本研究では, LLMとヒトの協調行動における並列性を明らかにすることを目的として, エージェントが適切に混合されたネットワーク構成と構造化されたネットワーク構成の両方において, プリソナージレンマに繰り返し関与するネットワーク相互作用について検討した。
ヒトはネットワーク内でより協力する傾向にあるが、LLMはネットワーク環境に限られた調整を施すことなく、主に混在した環境で協力する傾向にある。
特に、LLMの協力はモデルの種類によって異なり、人工エージェントにおける人間のような社会的適応性の複製の複雑さが説明できる。
これらの結果は重要なギャップを浮き彫りにしている: LLMは人間が固定ネットワークに展開する微妙で適応的な社会戦略をエミュレートするのに苦労している。
人間の参加者とは異なり、LLMはネットワーク構造や進化する社会的文脈に反応して協調行動を変えることはなく、人間が適応的に使用する相互規範を欠いている。
この制限は、将来のLLM設計において、より深い社会規範の理解を統合することの基本的な必要性を示しており、ネットワーク化された環境における人間のような協力と適応性のより正確なモデリングを可能にしている。
関連論文リスト
- The Dynamics of Social Conventions in LLM populations: Spontaneous Emergence, Collective Biases and Tipping Points [0.0]
シミュレーション対話を用いたLarge Language Model (LLM) エージェントの集団内におけるコンベンションのダイナミクスについて検討する。
グローバルに受け入れられる社会慣行は,LLM間の局所的な相互作用から自然に生じうることを示す。
献身的なLLMのマイノリティグループは、新しい社会慣習を確立することで社会変革を促進することができる。
論文 参考訳(メタデータ) (2024-10-11T16:16:38Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSimは、大規模言語モデル(LLM)における戦略的相互作用と協調的意思決定を研究するために設計された生成シミュレーションプラットフォームである。
最強のLSMエージェントを除く全てのエージェントは、GovSimの持続的均衡を達成することができず、生存率は54%以下である。
道徳的思考の理論である「大学化」に基づく推論を活用するエージェントは、持続可能性を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-04-25T15:59:16Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents [18.961470450132637]
本稿では、エージェントが文脈に深く関与し、明示的な指示なしに適応的な決定を行う自然現象の重要性を強調する。
我々は,3つの競争シナリオにまたがる自発的な協力を探究し,協力の段階的出現をシミュレートした。
論文 参考訳(メタデータ) (2024-02-19T18:00:53Z) - Network Formation and Dynamics Among Multi-LLMs [5.8418144988203915]
大規模言語モデル (LLM) は, ネットワーク形成における好みを問うと, 重要なソーシャルネットワークの原則を示す。
また、実世界のネットワークに基づくLCMの意思決定について検討し、三進的閉鎖とホモフィリーが優先的なアタッチメントよりも強い影響があることを明らかにした。
論文 参考訳(メタデータ) (2024-02-16T13:10:14Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
我々は,一貫した行動パターンと課題解決能力を備えたLLMベースのエージェントを,協調的生成エージェントとして導入する。
本研究では,人間のような推論能力と専門的スキルを備えた協調生成エージェントを実現する新しい枠組みを提案する。
我々の研究は、タスク指向の社会シミュレーションにおける大規模言語モデルの役割と進化に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-10T10:17:58Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。