論文の概要: Local Clustering Decoder: a fast and adaptive hardware decoder for the surface code
- arxiv url: http://arxiv.org/abs/2411.10343v1
- Date: Fri, 15 Nov 2024 16:43:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:52.437237
- Title: Local Clustering Decoder: a fast and adaptive hardware decoder for the surface code
- Title(参考訳): ローカルクラスタリングデコーダ:表面コードのための高速かつ適応的なハードウェアデコーダ
- Authors: Abbas B. Ziad, Ankit Zalawadiya, Canberk Topal, Joan Camps, György P. Gehér, Matthew P. Stafford, Mark L. Turner,
- Abstract要約: 本稿では,リアルタイムデコードシステムの精度と速度要件を同時に達成するソリューションとしてローカルクラスタリングデコーダを紹介する。
我々のデコーダはFPGA上に実装され、ハードウェア並列性を利用して、最速のキュービットタイプにペースを保ちます。
通常の非適応復号法と比較して4倍少ない物理量子ビットを持つ100万個の誤りのない量子演算を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: To avoid prohibitive overheads in performing fault-tolerant quantum computation, the decoding problem needs to be solved accurately and at speeds sufficient for fast feedback. Existing decoding systems fail to satisfy both of these requirements, meaning they either slow down the quantum computer or reduce the number of operations that can be performed before the quantum information is corrupted. We introduce the Local Clustering Decoder as a solution that simultaneously achieves the accuracy and speed requirements of a real-time decoding system. Our decoder is implemented on FPGAs and exploits hardware parallelism to keep pace with the fastest qubit types. Further, it comprises an adaptivity engine that allows the decoder to update itself in real-time in response to control signals, such as heralded leakage events. Under a realistic circuit-level noise model where leakage is a dominant error source, our decoder enables one million error-free quantum operations with 4x fewer physical qubits when compared to standard non-adaptive decoding. This is achieved whilst decoding in under 1 us per round with modest FPGA resources, demonstrating that high-accuracy real-time decoding is possible, and reducing the qubit counts required for large-scale fault-tolerant quantum computation.
- Abstract(参考訳): フォールトトレラントな量子計算を行う場合の異常なオーバーヘッドを避けるため、デコード問題は高速なフィードバックに十分な速度で正確かつ正確に解決する必要がある。
既存の復号化システムはこれらの要件の両方を満たすことができず、量子コンピュータを減速させるか、量子情報が破損する前に実行できる演算数を減少させる。
本稿では,リアルタイムデコードシステムの精度と速度要件を同時に達成するソリューションとしてローカルクラスタリングデコーダを紹介する。
我々のデコーダはFPGA上に実装され、ハードウェア並列性を利用して、最速のキュービットタイプにペースを保ちます。
さらに、アダプティビティエンジンを備えており、デコーダは、隠蔽された漏洩イベントなどの制御信号に応答して、自らをリアルタイムで更新することができる。
リークが主流となるリアルな回路レベルのノイズモデルの下では、デコーダは標準の非適応デコードに比べて物理量子ビットが4倍少ない100万個の誤りのない量子演算を可能にする。
これは、1ラウンドあたり1 us未満のデコードで、控えめなFPGAリソースで実現し、高精度なリアルタイムデコードが可能であることを実証し、大規模なフォールトトレラント量子計算に必要なキュービット数を削減した。
関連論文リスト
- Generalizing the matching decoder for the Chamon code [1.8416014644193066]
チャモン符号として知られる3次元,非CSS,低密度のパリティチェックコードに対して,マッチングデコーダを実装した。
一般化された整合デコーダは、整合前に信念伝播ステップによって拡張され、偏極雑音に対するしきい値が10.5%となる。
論文 参考訳(メタデータ) (2024-11-05T19:00:12Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Managing Classical Processing Requirements for Quantum Error Correction [0.36832029288386137]
ハードウェアデコーダの数を削減し,計算メモリのトレードオフをナビゲートするフレームワークを提案する。
プログラムの実行に必要なハードウェアデコーダの数を最大10倍に削減できる効率的なデコーダスケジューリングポリシーを提案する。
論文 参考訳(メタデータ) (2024-06-26T00:50:10Z) - Belief propagation as a partial decoder [0.0]
本稿では,デコードサイクルを高速化し,精度を向上する2段デコーダを提案する。
第一段階では、信念伝播に基づく部分復号器を用いて、高い確率で発生した誤りを訂正する。
第2段階では、従来のデコーダが残したエラーを補正する。
論文 参考訳(メタデータ) (2023-06-29T17:44:20Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
リアルタイム量子計算は、ノイズの多い量子ハードウェアによって生成されたデータのストリームから論理的な結果を取り出すことができる復号アルゴリズムを必要とする。
本稿では,デコーディングの精度を犠牲にすることなく,最小限の追加通信でこの問題に対処できるモジュールデコーディングを提案する。
本稿では,格子探索型耐故障ブロックのモジュールデコーディングの具体例であるエッジ頂点分解について紹介する。
論文 参考訳(メタデータ) (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - A local pre-decoder to reduce the bandwidth and latency of quantum error
correction [3.222802562733787]
フォールトトレラントな量子コンピュータは、量子ハードウェアと対面する古典的な復号システムによってサポートされる。
本稿では,標準整合デコーダに送信されるシンドロームデータの量を削減するために,グリーディ補正を行うローカルプリデコーダを提案する。
プリデコーダを用いてグローバルデコーダのランタイムと通信帯域幅を大幅に改善する。
論文 参考訳(メタデータ) (2022-08-09T11:01:56Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Hierarchical decoding to reduce hardware requirements for quantum
computing [0.0]
本稿では,安価なハードディシジョンデコーダを用いた表面符号に基づくフォールトトレラント量子コンピューティングアーキテクチャを提案する。
遅延復号器により、1500倍の帯域幅と復号化ハードウェアが得られる。
シミュレーションでは、Union-Findデコーダの10倍のスピードアップと、Minimum Weight Perfect Matching Decoderの50倍のスピードアップを示す。
論文 参考訳(メタデータ) (2020-01-30T16:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。