論文の概要: On the Foundation Model for Cardiac MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2411.10403v1
- Date: Fri, 15 Nov 2024 18:15:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:24.147619
- Title: On the Foundation Model for Cardiac MRI Reconstruction
- Title(参考訳): 心臓MRI再建の基礎モデルについて
- Authors: Chi Zhang, Michael Loecher, Cagan Alkan, Mahmut Yurt, Shreyas S. Vasanawala, Daniel B. Ennis,
- Abstract要約: 本稿では,適応アンロール,チャネルシフト,パターンとコントラスト-プロンプト-UNetを用いた基礎モデルを提案する。
PCP-UNetは画像コントラストとサンプリングパターンプロンプトを備える。
- 参考スコア(独自算出の注目度): 6.284878525302227
- License:
- Abstract: In recent years, machine learning (ML) based reconstruction has been widely investigated and employed in cardiac magnetic resonance (CMR) imaging. ML-based reconstructions can deliver clinically acceptable image quality under substantially accelerated scans. ML-based reconstruction, however, also requires substantial data and computational time to train the neural network, which is often optimized for a fixed acceleration rate or image contrast. In practice, imaging parameters are often tuned to best suit the diagnosis, which may differ from the training data. This can result in degraded image quality, and multiple trained networks are needed to fulfill the clinical demands. In this study, we propose a foundation model that uses adaptive unrolling, channel-shifting, and Pattern and Contrast-Prompt-UNet (PCP-UNet) to tackle the problem. In particular, the undersampled data goes through a different number of unrolled iterations according to its acceleration rate. Channel-shifting improves reconstructed data quality. The PCP-UNet is equipped with an image contrast and sampling pattern prompt. In vivo CMR experiments were performed using mixed combinations of image contrasts, acceleration rates, and (under)sampling patterns. The proposed foundation model has significantly improved image quality for a wide range of CMR protocols and outperforms the conventional ML-based method.
- Abstract(参考訳): 近年,機械学習をベースとした再建法が,心臓磁気共鳴(CMR)イメージングに広く研究されている。
MLベースの再構成は、実質的に加速されたスキャンの下で、臨床的に許容される画質を提供することができる。
しかし、MLベースの再構築では、ニューラルネットワークをトレーニングするのにかなりのデータと計算時間を要し、しばしば一定の加速率や画像コントラストに最適化される。
実際には、画像パラメータは、トレーニングデータとは異なる診断に最も適するように調整されることが多い。
これにより画質が劣化し、臨床要求を満たすために複数の訓練されたネットワークが必要である。
本研究では,適応アンローリング,チャネルシフト,パターンとコントラスト-プロンプト-UNet(PCP-UNet)を用いた基礎モデルを提案する。
特に、アンサンプされたデータは、その加速速度に応じて異なる数のアンロールされた反復を経る。
チャネルシフトは再構築されたデータ品質を改善する。
PCP-UNetは画像コントラストとサンプリングパターンプロンプトを備える。
画像コントラスト,加速速度,(アンダー)サンプリングパターンの混合組み合わせを用いて生体内CMR実験を行った。
提案する基盤モデルは,幅広いCMRプロトコルの画像品質を著しく向上させ,従来のML方式よりも優れていた。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction [16.63720411275398]
本研究では、MRI PI再構成のための一般化暗黙的神経表現(INR)に基づくフレームワークを提案する。
フレームワークのINRモデルは、完全にサンプリングされたMR画像を空間座標と以前のボクセル固有の特徴の連続関数として扱う。
公開されているMRIデータセットの実験は、複数の加速度因子で画像を再構成する際の提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-12T09:07:03Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Invertible Sharpening Network for MRI Reconstruction Enhancement [17.812760964428165]
InvSharpNet(InvSharpNet)は,MRI再建の視覚的品質を改善するために提案される。
入力データを地上の真実にマッピングする従来の方法とは異なり、InvSharpNetは、ぼやけた変換を学ぶための後方トレーニング戦略を適用している。
さまざまなMRIデータセットの実験では、InvSharpNetはアーティファクトの少ない再構築シャープネスを改善することができる。
論文 参考訳(メタデータ) (2022-06-06T18:21:48Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
k空間データにサブサンプリングマスクを適用することは、実際の臨床環境でk空間データの迅速な取得をシミュレートする方法である。
訓練された深層ニューラルネットワークが出力する再構成の質に対して,リチリニア・ラジアル・リフレクション・サブサンプリングを適用させる効果を比較検討し,検討した。
論文 参考訳(メタデータ) (2021-08-17T17:45:51Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - Training Variational Networks with Multi-Domain Simulations:
Speed-of-Sound Image Reconstruction [5.47832435255656]
変分ネットワーク(VN)は画像再構成における逆問題を最適化するための学習に基づく潜在的アプローチであることが示されている。
本稿では,従来のトランスデューサと単側組織アクセスを用いたパルスエコーSoS画像再構成問題に対するVNソリューションを初めて提示する。
提案手法とマルチソースドメイントレーニングを組み合わせることで,VNのドメイン適応能力を大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-06-25T13:32:08Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。