論文の概要: LLaVA-o1: Let Vision Language Models Reason Step-by-Step
- arxiv url: http://arxiv.org/abs/2411.10440v1
- Date: Fri, 15 Nov 2024 18:58:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:58.967478
- Title: LLaVA-o1: Let Vision Language Models Reason Step-by-Step
- Title(参考訳): LLaVA-o1: ビジョン言語モデルにステップバイステップ
- Authors: Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, Li Yuan,
- Abstract要約: LLaVA-o1は、自律的な多段階推論を実現するために設計された新しいVLMである。
チェーン・オブ・シークレットのプロンプトとは異なり、LLaVA-o1は独立に要約、視覚的解釈、論理的推論、結論生成の逐次的な段階に関与する。
100kのトレーニングサンプルと単純な推論時間スケーリング法により、LLaVA-o1はベースモデルよりも8.9%性能が向上する。
- 参考スコア(独自算出の注目度): 33.74540770982879
- License:
- Abstract: Large language models have demonstrated substantial advancements in reasoning capabilities, particularly through inference-time scaling, as illustrated by models such as OpenAI's o1. However, current Vision-Language Models (VLMs) often struggle to perform systematic and structured reasoning, especially when handling complex visual question-answering tasks. In this work, we introduce LLaVA-o1, a novel VLM designed to conduct autonomous multistage reasoning. Unlike chain-of-thought prompting, LLaVA-o1 independently engages in sequential stages of summarization, visual interpretation, logical reasoning, and conclusion generation. This structured approach enables LLaVA-o1 to achieve marked improvements in precision on reasoning-intensive tasks. To accomplish this, we compile the LLaVA-o1-100k dataset, integrating samples from various visual question answering sources and providing structured reasoning annotations. Besides, we propose an inference-time stage-level beam search method, which enables effective inference-time scaling. Remarkably, with only 100k training samples and a simple yet effective inference time scaling method, LLaVA-o1 not only outperforms its base model by 8.9% on a wide range of multimodal reasoning benchmarks, but also surpasses the performance of larger and even closed-source models, such as Gemini-1.5-pro, GPT-4o-mini, and Llama-3.2-90B-Vision-Instruct.
- Abstract(参考訳): 大規模言語モデルは、特にOpenAIのo1のようなモデルで示されるように、推論能力、特に推論時のスケーリングによって大幅に進歩している。
しかしながら、現在の視覚言語モデル(VLM)は、特に複雑な視覚的質問応答タスクを扱う場合、体系的で構造化された推論を行うのに苦労することが多い。
本稿では,自律型多段階推論を実現するための新しいVLMであるLLaVA-o1を紹介する。
チェーン・オブ・シークレットのプロンプトとは異なり、LLaVA-o1は独立に要約、視覚的解釈、論理的推論、結論生成の逐次的な段階に関与する。
この構造的アプローチにより、LLaVA-o1は推論集約タスクの精度を大幅に向上させることができる。
これを実現するために、LLaVA-o1-100kデータセットをコンパイルし、様々な視覚的質問応答源からのサンプルを統合し、構造化された推論アノテーションを提供する。
さらに,効率的な推論時間スケーリングを実現するための,推論時ステージレベルのビーム探索手法を提案する。
注目すべきは、100kのトレーニングサンプルと単純な推論時間スケーリング方法によって、LLaVA-o1はベースモデルを広範囲のマルチモーダル推論ベンチマークで8.9%上回るだけでなく、Gemini-1.5-pro、GPT-4o-mini、Llama-3.2-90B-Vision-Instructといった大規模でクローズドソースモデルの性能も上回っていることである。
関連論文リスト
- Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
大きな言語モデル(LLM)は、さらなる推論によって拡張された能力と信頼性を示す。
LLM推論の改善へのさまざまな取り組みにもかかわらず、高品質な長鎖推論データと最適化されたトレーニングパイプラインは、まだビジョン言語タスクでは不十分である。
本稿では,1)複雑なマルチモーダルタスクに対する長大かつ堅牢な推論データを生成するための初期の取り組みであるInsight-Vと,2)MLLMの推論能力を高めるための効果的なトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:55Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
OpenAIのo1モデルは、ほとんどのデータセットで最高のパフォーマンスを実現しています。
また、いくつかの推論ベンチマークについて詳細な分析を行う。
論文 参考訳(メタデータ) (2024-10-17T15:09:03Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールルアーニング法
本稿では、QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールLeArning手法を提案する。
論文 参考訳(メタデータ) (2024-08-07T12:42:09Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models [0.8133739801185272]
小さい言語モデルと大きい言語モデルの間の推論能力のアライメントは、主にスーパーバイザード・ファイン・チューニング(SFT)を通して行われる。
そこで本研究では,より小さな言語モデルを用いて自己定義する自己記述型指導手法を提案する。
コモンセンスと数学の推論タスクで得られた結果は、このアプローチがドメイン内とドメイン外の両方のシナリオでインストラクションチューニングを著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-01T09:10:27Z) - Enhancing Multimodal Large Language Models with Vision Detection Models: An Empirical Study [32.57246173437492]
本稿では,SOTA(State-of-the-art Object Detection)モデルとOCR(Optical Character Recognition)モデルを用いてMLLMの高機能化に関する実証的研究を行った。
LLaVA-1.5, DINO, PaddleOCRv2, Grounding DINOなどの代表モデルを用いて, 系統的および広範囲な実験を行った。
強化されたLLaVA-1.5は、オリジナルの7B/13Bモデルを10ベンチマークすべてで上回り、正規化平均スコアで最大12.5%向上した。
論文 参考訳(メタデータ) (2024-01-31T16:38:32Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [27.930351465266515]
本稿では,LVLMのための簡易かつ効果的なトレーニング戦略であるMoE-Tuningを提案する。
MoE-LLaVAはMoEベースのスパースLVLMアーキテクチャであり、ルータを通じてトップkの専門家のみをユニークに活性化する。
様々な視覚的理解と物体幻覚のベンチマークにおいて,MoE-LLaVAの顕著な性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-01-29T08:13:40Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
ステップ・バイ・ステップ制御可能な比較によるVLM事前学習の設計オプションについて検討した。
私たちは、最先端のモデルよりも一貫して優れたVisual LanguageモデルファミリであるVILAを構築します。
論文 参考訳(メタデータ) (2023-12-12T18:58:18Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge
Distillation in Small Models for Scientific QA [5.117094291273979]
大規模言語モデル(LLM)は、幅広い下流タスクで優れたパフォーマンスを示している。
本稿では2段階のフレームワークであるSci-CoTを提案する。
我々の8000万のパラメータモデルは、いくつかのショット設定の下でARC-EasyデータセットにおけるBLOOM-176Bの性能を上回ることができる。
論文 参考訳(メタデータ) (2023-08-09T03:18:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。