論文の概要: Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization
- arxiv url: http://arxiv.org/abs/2411.10442v2
- Date: Mon, 07 Apr 2025 09:09:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 16:00:10.228377
- Title: Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization
- Title(参考訳): 混合選好最適化によるマルチモーダル大言語モデルの推論能力向上
- Authors: Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu, Lewei Lu, Yu Qiao, Jifeng Dai,
- Abstract要約: 我々は、MLLMのマルチモーダル推論能力を高めるために、選好最適化(PO)プロセスを導入する。
具体的には、自動選好データ構築パイプラインを設計し、高品質で大規模なマルチモーダル推論選好データセットであるMMPRを作成する。
マルチモーダルCoT性能を向上するMPO(Mixed Preference Optimization)と呼ばれるシンプルな手法を開発した。
- 参考スコア(独自算出の注目度): 65.64108848398696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing open-source multimodal large language models (MLLMs) generally follow a training process involving pre-training and supervised fine-tuning. However, these models suffer from distribution shifts, which limit their multimodal reasoning, particularly in the Chain-of-Thought (CoT) performance. To address this, we introduce a preference optimization (PO) process to enhance the multimodal reasoning capabilities of MLLMs. Specifically, (1) on the data side, we design an automated preference data construction pipeline to create MMPR, a high-quality, large-scale multimodal reasoning preference dataset; and (2) on the model side, we explore integrating PO with MLLMs, developing a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance. Our approach enhances the multimodal reasoning abilities of both InternVL2-8B and InternVL2-76B. Notably, our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10$\times$ larger InternVL2-76B. We hope this study could inspire further advancements in MLLMs. Code, data, and model are released.
- Abstract(参考訳): 既存のオープンソースのマルチモーダル大言語モデル(MLLM)は、トレーニング前と教師付き微調整を含むトレーニングプロセスに従うのが一般的である。
しかしながら、これらのモデルは分散シフトに悩まされており、特にCoT(Chain-of-Thought)のパフォーマンスにおいて、マルチモーダルな推論が制限される。
そこで本稿では,MLLMのマルチモーダル推論能力を高めるための選好最適化(PO)プロセスを提案する。
具体的には,(1)データ側では,高品質で大規模なマルチモーダル推論選好データセットであるMMPRを作成するための自動選好データ構築パイプラインを設計し,(2)モデル側ではPOとMLLMを統合することを検討するとともに,シンプルで効果的な手法である混合選好最適化(MPO)を開発し,マルチモーダルCoT性能を向上する。
提案手法は,InternVL2-8BとInternVL2-76Bの両方のマルチモーダル推論能力を向上させる。
特に、我々のモデルであるInternVL2-8B-MPOは、MathVista上で67.0の精度を実現し、InternVL2-8Bを8.7ポイント上回り、10$\times$大きなInternVL2-76Bに匹敵する性能を達成した。
この研究によってMLLMのさらなる進歩がもたらされることを願っている。
コード、データ、モデルがリリースされる。
関連論文リスト
- InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models [139.19991097260115]
InternVL3は、ネイティブなマルチモーダル事前学習パラダイムを備えたInternVLシリーズの重要な進歩である。
特に、InternVL3-78B は MMMU ベンチマークで72.2 のスコアを獲得し、オープンソースの MLLM に新しい最先端技術を設定する。
オープンサイエンスの原則を追求するため、我々は、次世代MLLMのさらなる研究・開発を促進するために、トレーニングデータとモデルウェイトの両方を公開します。
論文 参考訳(メタデータ) (2025-04-14T17:59:25Z) - VisualPRM: An Effective Process Reward Model for Multimodal Reasoning [76.35753243272521]
既存のマルチモーダル大言語モデル(MLLM)の推論能力を改善するVisualPRMを導入する。
我々のモデルは7つのマルチモーダル推論ベンチマークで5.9ポイントの改善を実現している。
マルチモーダルPRMの評価のために,人間に注釈付きステップワイズラベルを付したベンチマークであるVisualProcessBenchを提案する。
論文 参考訳(メタデータ) (2025-03-13T12:03:37Z) - M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning [90.75075886543404]
MLLM(Multimodal Large Language Models)は、幅広い領域にわたる顕著なパフォーマンスを示す。
本研究では,MLLMの効率的な命令チューニングのための新しいMultimodal Prompt Tuning (M$2$PT) 手法を提案する。
論文 参考訳(メタデータ) (2024-09-24T01:40:24Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - Efficient Multi-Task Large Model Training via Data Heterogeneity-aware Model Management [35.06717005729781]
最近の基礎モデルは、複数の機械学習(ML)タスクと複数のデータモダリティを統一されたベースモデル構造といくつかの特別なモデルコンポーネントで処理することができる。
このようなマルチタスク(MT)マルチモーダル(MM)モデルの開発は、既存のトレーニングシステムに重要なモデル管理課題をもたらす。
プロトタイプシステムを構築し,様々な大規模MT MMモデル上で評価する。
実験では,最先端のトレーニングシステムと比較して,スピードアップ比が71%まで向上し,システムの性能と効率が向上した。
論文 参考訳(メタデータ) (2024-09-05T09:10:40Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT)アプローチは、複雑な推論タスクにおいて、LLM(Large Language Models)の能力を高めるために使用できる。
しかし、マルチモーダル推論における最適なCoT実例の選択は、まだ検討されていない。
本稿では,この課題に対処する新しい手法として,検索機構を用いて実演例を自動的に選択する手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T08:07:21Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。