論文の概要: Boolean-aware Boolean Circuit Classification: A Comprehensive Study on Graph Neural Network
- arxiv url: http://arxiv.org/abs/2411.10481v1
- Date: Wed, 13 Nov 2024 08:38:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 17:53:04.322832
- Title: Boolean-aware Boolean Circuit Classification: A Comprehensive Study on Graph Neural Network
- Title(参考訳): ブール対応ブール回路分類:グラフニューラルネットワークに関する総合的研究
- Authors: Liwei Ni, Xinquan Li, Biwei Xie, Huawei Li,
- Abstract要約: グラフ構造に基づくブール回路分類は、グラフ分類タスクにグループ化することができる。
まず、提案したマッチング等価クラスをBoolean-aware'プロパティに基づいて定義する。
本稿では,グラフニューラルネットワーク(GNN)を基盤として,ブール認識回路の分類に影響を及ぼす要因を解析するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.1080766959962625
- License:
- Abstract: Boolean circuit is a computational graph that consists of the dynamic directed graph structure and static functionality. The commonly used logic optimization and Boolean matching-based transformation can change the behavior of the Boolean circuit for its graph structure and functionality in logic synthesis. The graph structure-based Boolean circuit classification can be grouped into the graph classification task, however, the functionality-based Boolean circuit classification remains an open problem for further research. In this paper, we first define the proposed matching-equivalent class based on its ``Boolean-aware'' property. The Boolean circuits in the proposed class can be transformed into each other. Then, we present a commonly study framework based on graph neural network~(GNN) to analyze the key factors that can affect the Boolean-aware Boolean circuit classification. The empirical experiment results verify the proposed analysis, and it also shows the direction and opportunity to improve the proposed problem. The code and dataset will be released after acceptance.
- Abstract(参考訳): ブール回路は動的有向グラフ構造と静的関数からなる計算グラフである。
一般的に用いられる論理最適化とブールマッチングに基づく変換は、ブール回路のグラフ構造と論理合成における機能に対する振舞いを変化させることができる。
グラフ構造に基づくブール回路分類は、グラフ分類タスクに分類することができるが、機能に基づくブール回路分類は、さらなる研究において未解決の課題である。
本稿ではまず,その `Boolean-aware'' 特性に基づいて,提案したマッチング等価クラスを定義する。
提案クラスのブール回路は互いに変換できる。
次に,グラフニューラルネットワーク~(GNN)に基づいて,ブール対応ブール回路分類に影響を及ぼす要因を解析するフレームワークを提案する。
実証実験により,提案した解析結果が検証され,また,提案した問題を改善するための方向性と機会も示される。
コードとデータセットは受け入れた後にリリースされる。
関連論文リスト
- Boolean Product Graph Neural Networks [8.392545965667288]
グラフニューラルネットワーク(GNN)は最近、近隣ノードからの情報の集約を含む重要な操作によって、大きな成功を収めている。
本稿では,GNNにおける新しいブール積に基づくグラフ残差接続を提案し,潜在グラフと元のグラフをリンクする。
提案手法をベンチマークデータセットで検証し,GNNの性能とロバスト性を向上させる能力を示す。
論文 参考訳(メタデータ) (2024-09-21T03:31:33Z) - Boolean Logic as an Error feedback mechanism [0.5439020425819]
ブール論理のバックパゲーションの概念は、重みとアクティベーションがブール数であるニューラルネットワークを構築するために導入された。
ほとんどの計算は、訓練とフェーズの間、実際の算術ではなく論理で行うことができる。
論文 参考訳(メタデータ) (2024-01-29T18:56:21Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Learning to Reason with Neural Networks: Generalization, Unseen Data and
Boolean Measures [44.87247707099189]
本稿では,[ZRKB21]で導入されたポインタ値検索(PVR)ベンチマークについて考察する。
まず、対称ニューラルネットワーク上で勾配勾配勾配の論理関数を学習するために、対象関数の雑音安定性の観点から一般化誤差を下界化できることを示した。
論文 参考訳(メタデータ) (2022-05-26T21:53:47Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Reverse Derivative Ascent: A Categorical Approach to Learning Boolean
Circuits [0.0]
Reverse Derivative Ascentは、機械学習のためのグラデーションベースのメソッドのカテゴリアナログです。
我々のモチベーションは逆回路であり、逆微分圏の理論を用いてアルゴリズムをそのような回路に適用する方法を示す。
ベンチマーク機械学習データセットに関する実験結果を提供することで,その実証的価値を示す。
論文 参考訳(メタデータ) (2021-01-26T00:07:20Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
本稿では,2つのアイデアに基づいた,強力かつ同変なメッセージパッシングフレームワークを提案する。
まず、各ノードの周囲の局所的コンテキスト行列を学習するために、特徴に加えてノードの1ホット符号化を伝搬する。
次に,メッセージのパラメトリゼーション手法を提案する。
論文 参考訳(メタデータ) (2020-06-26T17:15:16Z) - LogicalFactChecker: Leveraging Logical Operations for Fact Checking with
Graph Module Network [111.24773949467567]
ファクトチェックに論理演算を活用するニューラルネットワークアプローチであるLogicalFactCheckerを提案する。
大規模なベンチマークデータセットであるTABFACT上での最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-04-28T17:04:19Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
グラフニューラルネットワーク(GNN)を用いた論理一般化の課題について検討する。
ベンチマークスイートであるGraphLogでは、学習アルゴリズムが異なる合成論理でルール誘導を実行する必要がある。
モデルが一般化し適応する能力は、トレーニング中に遭遇する論理規則の多様性によって強く決定される。
論文 参考訳(メタデータ) (2020-03-14T05:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。