論文の概要: Debias-CLR: A Contrastive Learning Based Debiasing Method for Algorithmic Fairness in Healthcare Applications
- arxiv url: http://arxiv.org/abs/2411.10544v1
- Date: Fri, 15 Nov 2024 19:32:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:03.373229
- Title: Debias-CLR: A Contrastive Learning Based Debiasing Method for Algorithmic Fairness in Healthcare Applications
- Title(参考訳): Debias-CLR: 医療分野におけるアルゴリズムフェアネスのためのコントラスト学習に基づくデバイアス法
- Authors: Ankita Agarwal, Tanvi Banerjee, William Romine, Mia Cajita,
- Abstract要約: 異なる治療と戦うために,暗黙の処理内脱バイアス法を提案した。
心不全患者の臨床記録と診断基準,治療報告,生理的活力について検討した。
Debias-CLRは、性別や民族を嫌う場合に、SC-WEAT(Single-Category Word Embedding Association Test)の効果を減少させることができた。
- 参考スコア(独自算出の注目度): 0.17624347338410748
- License:
- Abstract: Artificial intelligence based predictive models trained on the clinical notes can be demographically biased. This could lead to adverse healthcare disparities in predicting outcomes like length of stay of the patients. Thus, it is necessary to mitigate the demographic biases within these models. We proposed an implicit in-processing debiasing method to combat disparate treatment which occurs when the machine learning model predict different outcomes for individuals based on the sensitive attributes like gender, ethnicity, race, and likewise. For this purpose, we used clinical notes of heart failure patients and used diagnostic codes, procedure reports and physiological vitals of the patients. We used Clinical BERT to obtain feature embeddings within the diagnostic codes and procedure reports, and LSTM autoencoders to obtain feature embeddings within the physiological vitals. Then, we trained two separate deep learning contrastive learning frameworks, one for gender and the other for ethnicity to obtain debiased representations within those demographic traits. We called this debiasing framework Debias-CLR. We leveraged clinical phenotypes of the patients identified in the diagnostic codes and procedure reports in the previous study to measure fairness statistically. We found that Debias-CLR was able to reduce the Single-Category Word Embedding Association Test (SC-WEAT) effect size score when debiasing for gender and ethnicity. We further found that to obtain fair representations in the embedding space using Debias-CLR, the accuracy of the predictive models on downstream tasks like predicting length of stay of the patients did not get reduced as compared to using the un-debiased counterparts for training the predictive models. Hence, we conclude that our proposed approach, Debias-CLR is fair and representative in mitigating demographic biases and can reduce health disparities.
- Abstract(参考訳): 臨床ノートで訓練された人工知能ベースの予測モデルは、人口統計学的に偏りがある。
これは、患者の滞在期間などの結果を予測する上で、医療上の不一致につながる可能性がある。
したがって、これらのモデルにおける人口統計バイアスを軽減する必要がある。
我々は、性別、民族、人種などの敏感な属性に基づいて、機械学習モデルが個人に対して異なる結果を予測するときに発生する異なる治療と戦うために、暗黙的に処理中の偏りを抑える方法を提案した。
本研究は, 心不全患者の臨床注記を用いて, 診断基準, 処置報告, 生理的意義について検討した。
臨床的BERTを用いて診断符号と手順報告に特徴埋め込みを,LSTMオートエンコーダを用いて生理的要素に特徴埋め込みを施した。
そこで我々は、性別と民族の2つの異なる深層学習学習フレームワークを訓練し、それらの特徴の中で偏りのある表現を得るようにした。
私たちはこのデバイアスフレームワークをDebias-CLRと呼びました。
本研究は, 診断基準および治療報告で同定された患者の臨床的表現型を利用して, 統計的に公正度を測定した。
Debias-CLRは、性別や民族を嫌う場合に、SC-WEAT(Single-Category Word Embedding Association Test)の効果を減少させることができた。
さらに,Debias-CLRを用いて埋込空間の公平な表現を得るために,患者が滞在する期間などの下流作業における予測モデルの精度は,予測モデルのトレーニングに不偏の指標を使用する場合に比べて低下しないことがわかった。
したがって,提案手法であるDebias-CLRは,人口動態の偏りを緩和し,健康格差を低減できると考えられる。
関連論文リスト
- FairEHR-CLP: Towards Fairness-Aware Clinical Predictions with Contrastive Learning in Multimodal Electronic Health Records [15.407593899656762]
本報告では,FairEHR-CLPについて述べる。
FairEHR-CLPは2段階のプロセスで動作し、患者の人口統計、縦断データ、臨床ノートを利用する。
サブグループ間での誤差率の差異を効果的に測定する新しい公正度尺度を導入する。
論文 参考訳(メタデータ) (2024-02-01T19:24:45Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Auditing ICU Readmission Rates in an Clinical Database: An Analysis of
Risk Factors and Clinical Outcomes [0.0]
本研究では,30日間の読解問題における臨床データ分類のための機械学習パイプラインを提案する。
公正監査は、平等機会、予測パリティ、偽陽性率パリティ、偽陰性率パリティ基準の格差を明らかにする。
この研究は、人工知能(AI)システムのバイアスと公平性に対処するために、研究者、政策立案者、実践者の協力的努力の必要性を示唆している。
論文 参考訳(メタデータ) (2023-04-12T17:09:38Z) - Identifying and mitigating bias in algorithms used to manage patients in
a pandemic [4.756860520861679]
現実のデータセットを使用して、新型コロナウイルスの死亡率、人工呼吸器の状態、入院状態を予測するために、ロジスティック回帰モデルが作成された。
モデルではバイアス試験の回数が57%減少した。
キャリブレーション後, 予測モデルの平均感度は0.527から0.955に増加した。
論文 参考訳(メタデータ) (2021-10-30T21:10:56Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
医用画像解析アプリケーションにおけるMICCAI 2018の実践を調査するために,MICCAI 2018の手順を調査した。
意外なことに、診断に焦点を当てた論文では、使用されるデータセットの人口統計がほとんど書かれていないことが判明した。
本研究では,非偏りのある特徴を,対向的な学習環境において,人口統計変数を明示的に使用することにより学習可能であることを示す。
論文 参考訳(メタデータ) (2020-05-20T13:51:01Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。