論文の概要: Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
- arxiv url: http://arxiv.org/abs/2503.23819v1
- Date: Mon, 31 Mar 2025 08:06:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:39:41.416588
- Title: Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
- Title(参考訳): 患者集団における皮膚病変クラスの基礎的AIモデルの予測公正性評価のためのコンフォーマル不確実性定量化
- Authors: Swarnava Bhattacharyya, Umapada Pal, Tapabrata Chakraborti,
- Abstract要約: 我々は、コンフォメーション解析を用いて、視覚変換器に基づく基礎モデルの予測不確かさを定量化する。
基礎モデルの特徴埋め込みの堅牢性を評価するために、公正度測定としてどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 8.692647930497936
- License:
- Abstract: Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
- Abstract(参考訳): 医療画像に基づくディープラーニングベースの診断AIシステムは、人間の専門家と同じようなパフォーマンスを提供し始めている。
しかし、これらのデータ空腹複合システムは本質的にブラックボックスであり、医療のようなリスクの高いアプリケーションでは採用が遅れている。
この透明性の欠如という問題は、何百万ものデータポイントに対して自己監督的な方法で訓練され、下流のタスクにまたがる堅牢な一般化を提供する、最近の大規模基盤モデルの場合、さらに悪化するが、それらから生じる埋め込みは、解釈不可能なプロセスを通じて起こり、臨床応用にとって信頼できない。
このタイムリーな問題に対処するために、我々は、いくつかの公開ベンチマークデータセットを用いて皮膚病変分類のタスクに対して、性別、年齢、民族性に関して、視覚トランスフォーマー(ViT)ベースの基盤モデルの予測不確かさを定量化するために、コンフォメーション分析を展開した。
この方法の大きな利点は、コンフォメーション分析がメソッド独立であり、人口レベルでのカバレッジ保証を提供するだけでなく、各個人に対する不確実性スコアも提供することである。
我々はモデルトレーニング中にモデル非依存の動的F1スコアサンプリングを用い、クラス不均衡の安定化に寄与し、このバイアス緩和ステップの有無に関わらず不確実性定量化(UQ)に与える影響を調べた。
そこで本研究では,基礎モデル(Google DermFoundation)の機能埋め込みの堅牢性を評価し,臨床AIの信頼性と公正性を高めるために,公正度尺度としてどのように使用できるかを示す。
関連論文リスト
- Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
医療意思決定におけるAIの普及は、倫理的および安全性に関する懸念から、いまだに妨げられている。
しかし、一般的なディープラーニングアプローチは、データシフトによる過信傾向にある。
本研究は臨床応用における信頼性について考察する。
論文 参考訳(メタデータ) (2024-01-24T18:49:30Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
デジタルプラットフォームを通じて提供される行動的健康介入は、健康結果を大幅に改善する可能性がある。
患者に対するパーソナライズされた介入を最適化して長期的効果を最大化する問題について検討した。
患者システムの状態空間を個別のレベルに分解するDecompPIをダブする新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-21T21:42:03Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Modeling Disagreement in Automatic Data Labelling for Semi-Supervised
Learning in Clinical Natural Language Processing [2.016042047576802]
放射線学報告における観測検出問題に応用した最先端の予測モデルからの不確実性推定の品質について検討する。
論文 参考訳(メタデータ) (2022-05-29T20:20:49Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Evaluating Model Robustness and Stability to Dataset Shift [7.369475193451259]
機械学習モデルの安定性を解析するためのフレームワークを提案する。
本手法では,アルゴリズムが性能の悪い分布を決定するために,元の評価データを用いる。
我々は,アルゴリズムの性能を"Worst-case"分布で推定する。
論文 参考訳(メタデータ) (2020-10-28T17:35:39Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。