Large Language Models as Robust Data Generators in Software Analytics: Are We There Yet?
- URL: http://arxiv.org/abs/2411.10565v2
- Date: Sun, 20 Apr 2025 16:35:44 GMT
- Title: Large Language Models as Robust Data Generators in Software Analytics: Are We There Yet?
- Authors: Md. Abdul Awal, Mrigank Rochan, Chanchal K. Roy,
- Abstract summary: Adversarial attacks can compromise the reliability and security of software systems.<n>It is unclear how Large Language Model (LLM)-generated data compares to human-written data.
- Score: 11.16693333878553
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Model (LLM)-generated data is increasingly used in software analytics, but it is unclear how this data compares to human-written data, particularly when models are exposed to adversarial scenarios. Adversarial attacks can compromise the reliability and security of software systems, so understanding how LLM-generated data performs under these conditions, compared to human-written data, which serves as the benchmark for model performance, can provide valuable insights into whether LLM-generated data offers similar robustness and effectiveness. To address this gap, we systematically evaluate and compare the quality of human-written and LLM-generated data for fine-tuning robust pre-trained models (PTMs) in the context of adversarial attacks. We evaluate the robustness of six widely used PTMs, fine-tuned on human-written and LLM-generated data, before and after adversarial attacks. This evaluation employs nine state-of-the-art (SOTA) adversarial attack techniques across three popular software analytics tasks: clone detection, code summarization, and sentiment analysis in code review discussions. Additionally, we analyze the quality of the generated adversarial examples using eleven similarity metrics. Our findings reveal that while PTMs fine-tuned on LLM-generated data perform competitively with those fine-tuned on human-written data, they exhibit less robustness against adversarial attacks in software analytics tasks. Our study underscores the need for further exploration into enhancing the quality of LLM-generated training data to develop models that are both high-performing and capable of withstanding adversarial attacks in software analytics.
Related papers
- Learning from Reasoning Failures via Synthetic Data Generation [5.893928870271388]
We propose a new approach for synthetic data generation which is grounded in the analysis of an existing LMM's reasoning failures.
We generate a large multimodal instruction tuning dataset containing over 553k examples.
Our results show that models trained on our synthetic data can even exceed the performance of LMMs trained on an equivalent amount of additional real data.
arXiv Detail & Related papers (2025-04-20T07:45:53Z) - Large Language Models for Market Research: A Data-augmentation Approach [3.3199591445531453]
Large Language Models (LLMs) have transformed artificial intelligence by excelling in complex natural language processing tasks.
Recent studies highlight a significant gap between LLM-generated and human data, with biases introduced when substituting between the two.
We propose a novel statistical data augmentation approach that efficiently integrates LLM-generated data with real data in conjoint analysis.
arXiv Detail & Related papers (2024-12-26T22:06:29Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.
Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models [79.65071553905021]
We propose Data Advisor, a method for generating data that takes into account the characteristics of the desired dataset.
Data Advisor monitors the status of the generated data, identifies weaknesses in the current dataset, and advises the next iteration of data generation.
arXiv Detail & Related papers (2024-10-07T17:59:58Z) - Quality Matters: Evaluating Synthetic Data for Tool-Using LLMs [11.24476329991465]
Training large language models (LLMs) for external tool usage is a rapidly expanding field.
The absence of systematic data quality checks poses complications for properly training and testing models.
We propose two approaches for assessing the reliability of data for training LLMs to use external tools.
arXiv Detail & Related papers (2024-09-24T17:20:02Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
Large language models (LLMs) have shown great potential for automatic code generation.
Recent studies highlight that many LLM-generated code contains serious security vulnerabilities.
We introduce HexaCoder, a novel approach to enhance the ability of LLMs to generate secure codes.
arXiv Detail & Related papers (2024-09-10T12:01:43Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
We present an exploratory study on whether fine-tuning pre-trained LLMs on datasets of vulnerability-fixing commits can promote secure code generation.
We crawled a fine-tuning dataset for secure code generation by collecting code fixes of confirmed vulnerabilities from open-source repositories.
Our exploration reveals that fine-tuning LLMs can improve secure code generation by 6.4% in C language and 5.4% in C++ language.
arXiv Detail & Related papers (2024-08-17T02:51:27Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
Large Language Models (LLMs) have revolutionized automated code generation in software engineering.
However, concerns have arisen regarding the security and quality of the generated code.
Our research aims to tackle these issues by introducing a framework for secure behavioral learning of LLMs.
arXiv Detail & Related papers (2024-06-18T11:29:34Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
We propose a novel zero-shot synthetic code detector based on the similarity between the code and its rewritten variants.
Our results demonstrate a notable enhancement over existing synthetic content detectors designed for general texts.
arXiv Detail & Related papers (2024-05-25T08:57:28Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
We propose a benchmark to evaluate the effectiveness of Large Language Models (LLMs) in binary code understanding.
Our evaluations reveal that existing LLMs can understand binary code to a certain extent, thereby improving the efficiency of binary code analysis.
arXiv Detail & Related papers (2024-04-15T14:44:08Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - Assured LLM-Based Software Engineering [51.003878077888686]
This paper is an outline of the content of the keynote by Mark Harman at the International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering, Monday 15th April 2024, Lisbon, Portugal.
arXiv Detail & Related papers (2024-02-06T20:38:46Z) - Ocassionally Secure: A Comparative Analysis of Code Generation
Assistants [8.573156248244695]
This paper focuses on identifying and understanding the conditions and contexts in which LLMs can be effectively and safely deployed.
We conducted a comparative analysis of four advanced LLMs--GPT-3.5 and GPT-4 using ChatGPT and Bard and Gemini from Google--using 9 separate tasks to assess each model's code generation capabilities.
We collected 61 code outputs and analyzed them across several aspects: functionality, security, performance, complexity, and reliability.
arXiv Detail & Related papers (2024-02-01T15:49:47Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
This paper describes SALLM, a framework to benchmark Large Language Models' abilities to generate secure code systematically.
The framework has three major components: a novel dataset of security-centric Python prompts, assessment techniques to evaluate the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.
arXiv Detail & Related papers (2023-11-01T22:46:31Z) - Do Large Language Models Pay Similar Attention Like Human Programmers When Generating Code? [10.249771123421432]
We investigate whether Large Language Models (LLMs) attend to the same parts of a task description as human programmers during code generation.
We manually analyzed 211 incorrect code snippets and found five attention patterns that can be used to explain many code generation errors.
Our findings highlight the need for human-aligned LLMs for better interpretability and programmer trust.
arXiv Detail & Related papers (2023-06-02T00:57:03Z) - Utility Assessment of Synthetic Data Generation Methods [0.0]
We investigate whether different methods of generating fully synthetic data vary in their utility a priori.
We find some methods to perform better than others across the board.
We do get promising findings for classification tasks when using synthetic data for training machine learning models.
arXiv Detail & Related papers (2022-11-23T11:09:52Z) - Exploring the Efficacy of Automatically Generated Counterfactuals for
Sentiment Analysis [17.811597734603144]
We propose an approach to automatically generating counterfactual data for data augmentation and explanation.
A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance.
arXiv Detail & Related papers (2021-06-29T10:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.