論文の概要: Is thermography a viable solution for detecting pressure injuries in dark skin patients?
- arxiv url: http://arxiv.org/abs/2411.10627v1
- Date: Fri, 15 Nov 2024 23:22:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:25.735373
- Title: Is thermography a viable solution for detecting pressure injuries in dark skin patients?
- Title(参考訳): 皮膚黒色症におけるサーモグラフィーは血圧障害の検出に有効か?
- Authors: Miriam Asare-Baiden, Kathleen Jordan, Andrew Chung, Sharon Eve Sonenblum, Joyce C. Ho,
- Abstract要約: 圧力障害(PI)の検出は特に暗い肌の色調において困難である。
深層学習モデルは、PIを確実に検出する大きな可能性を証明している。
より暗い肌色に焦点をあてた35人の被験者による新しい熱・光学画像データセットを導入する。
我々は、すべての皮膚のトーン上の熱画像または光学画像に基づいて訓練された小さな畳み込みニューラルネットワーク(CNN)の性能を比較した。
- 参考スコア(独自算出の注目度): 3.8856323181885633
- License:
- Abstract: Pressure injury (PI) detection is challenging, especially in dark skin tones, due to the unreliability of visual inspection. Thermography has been suggested as a viable alternative as temperature differences in the skin can indicate impending tissue damage. Although deep learning models have demonstrated considerable promise toward reliably detecting PI, the existing work fails to evaluate the performance on darker skin tones and varying data collection protocols. In this paper, we introduce a new thermal and optical imaging dataset of 35 participants focused on darker skin tones where temperature differences are induced through cooling and cupping protocols. We vary the image collection process to include different cameras, lighting, patient pose, and camera distance. We compare the performance of a small convolutional neural network (CNN) trained on either the thermal or the optical images on all skin tones. Our preliminary results suggest that thermography-based CNN is robust to data collection protocols for all skin tones.
- Abstract(参考訳): 特に暗い肌のトーンでは、視覚検査の信頼性が低いため、圧力障害(PI)検出が困難である。
皮膚の温度差は、差し迫った組織損傷を示す可能性があるため、サーモグラフィーは有効な代替手段として提案されている。
深層学習モデルは、PIを確実に検出する大きな可能性を証明しているが、既存の研究は、より暗い肌の色と様々なデータ収集プロトコルのパフォーマンスを評価することに失敗している。
本稿では,冷却およびカッピングプロトコルによって温度差が誘導される,より暗い肌のトーンに焦点を当てた35人の被験者による新しい熱・光学画像データセットを提案する。
画像収集プロセスには、さまざまなカメラ、照明、患者ポーズ、カメラ距離が含まれています。
我々は、すべての皮膚のトーン上の熱画像または光学画像に基づいて訓練された小さな畳み込みニューラルネットワーク(CNN)の性能を比較した。
サーモグラフィーをベースとしたCNNは,すべての肌色に対するデータ収集プロトコルに頑健であることが予備的な結果から示唆された。
関連論文リスト
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - S-SYNTH: Knowledge-Based, Synthetic Generation of Skin Images [2.79604239303318]
S-SYNTHは知識ベースで適応可能なオープンソーススキンシミュレーションフレームワークである。
我々は、解剖学的にインスパイアされた多層多層皮膚と成長する病変モデルを用いて、合成皮膚、3次元モデル、デジタル化された画像を生成する。
また, 合成データを用いて得られた結果は, 実際の皮膚画像と類似した傾向を示した。
論文 参考訳(メタデータ) (2024-07-31T23:16:29Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - Unsupervised Skin Lesion Segmentation via Structural Entropy
Minimization on Multi-Scale Superpixel Graphs [59.19218582436495]
本研究では,構造エントロピーと孤立林外層検出に基づく非教師付き皮膚病変sEgmentationフレームワーク,すなわちSLEDを提案する。
皮膚病変は、皮膚内視鏡像から構築した超画素グラフの構造エントロピーを最小化することにより区分される。
健康な皮膚の特徴の整合性を特徴とし, マルチスケールのセグメンテーション機構を考案し, マルチスケールのスーパーピクセル特徴を活用して, セグメンテーション精度を向上させる。
論文 参考訳(メタデータ) (2023-09-05T02:15:51Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - HierAttn: Effectively Learn Representations from Stage Attention and
Branch Attention for Skin Lesions Diagnosis [18.026088450803258]
皮膚がんの早期診断と治療には, 皮膚病変の正確な非バイアス検査が重要である。
最近の研究では、画像の早期診断のための分類のために、アンサンブル畳み込みニューラルネットワーク(CNN)が開発されている。
階層型および自己注意型ニューラルネットワークであるHierAttnを紹介する。
論文 参考訳(メタデータ) (2022-05-09T14:30:34Z) - Color Invariant Skin Segmentation [17.501659517108884]
本稿では,カラー情報に頼らずに画像中の皮膚を自動的に検出する問題に対処する。
この研究の主な動機は、皮膚のトーン全体にわたって一貫性のある結果を達成することである。
我々はそのような情報がない場合によく機能する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-21T05:07:21Z) - Automatic Facial Skin Feature Detection for Everyone [60.31670960526022]
本研究では,野生の自撮り自撮りのために,さまざまな肌のトーンと年齢群にまたがって機能する顔顔の特徴自動検出法を提案する。
具体的には,肌の色,重度度,照明条件の異なる自撮り画像に対して,アクネ,顔料,ニキビの位置を注釈する。
論文 参考訳(メタデータ) (2022-03-30T04:52:54Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
データ隠蔽タスクでは、異なる耐久性を有するため、カバー画像の各ピクセルを別々に扱う必要がある。
Inverse Gradient Attention (IGA) を用いた新しい深層データ隠蔽方式を提案する。
実証的な実験により、提案モデルが2つの先行するデータセット上で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-21T19:08:23Z) - Leveraging Adaptive Color Augmentation in Convolutional Neural Networks
for Deep Skin Lesion Segmentation [0.0]
データ表現とモデル性能を増幅する適応色拡張手法を提案する。
正常な皮膚組織に対して皮膚病変を識別するためのネットワークによって得られた意味的構造的特徴を質的に同定し,検証した。
論文 参考訳(メタデータ) (2020-10-31T00:16:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。