論文の概要: Deep Learning-Based Image Compression for Wireless Communications: Impacts on Reliability,Throughput, and Latency
- arxiv url: http://arxiv.org/abs/2411.10650v1
- Date: Sat, 16 Nov 2024 01:14:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:08.378998
- Title: Deep Learning-Based Image Compression for Wireless Communications: Impacts on Reliability,Throughput, and Latency
- Title(参考訳): 無線通信のための深層学習に基づく画像圧縮:信頼性,スループット,レイテンシへの影響
- Authors: Mostafa Naseri, Pooya Ashtari, Mohamed Seif, Eli De Poorter, H. Vincent Poor, Adnan Shahid,
- Abstract要約: 無線通信では、効率的な画像伝送は信頼性、スループット、レイテンシのバランスをとる必要がある。
ハイパープライアモデルとVQGAN(Vector Quantized Generative Adversarial Network)の2つの最先端学習モデルについて検討する。
両モデルのプログレッシブバージョンを提案し、不完全なチャネル条件下で部分的な画像伝送と復号を可能にする。
- 参考スコア(独自算出の注目度): 41.77014570882275
- License:
- Abstract: In wireless communications, efficient image transmission must balance reliability, throughput, and latency, especially under dynamic channel conditions. This paper presents an adaptive and progressive pipeline for learned image compression (LIC)-based architectures tailored to such environments. We investigate two state-of-the-art learning-based models: the hyperprior model and Vector Quantized Generative Adversarial Network (VQGAN). The hyperprior model achieves superior compression performance through lossless compression in the bottleneck but is susceptible to bit errors, necessitating the use of error correction or retransmission mechanisms. In contrast, the VQGAN decoder demonstrates robust image reconstruction capabilities even in the absence of channel coding, enhancing reliability in challenging transmission scenarios. We propose progressive versions of both models, enabling partial image transmission and decoding under imperfect channel conditions. This progressive approach not only maintains image integrity under poor channel conditions but also significantly reduces latency by allowing immediate partial image availability. We evaluate our pipeline using the Kodak high-resolution image dataset under a Rayleigh fading wireless channel model simulating dynamic conditions. The results indicate that the progressive transmission framework enhances reliability and latency while maintaining or improving throughput compared to non-progressive counterparts across various Signal-to-Noise Ratio (SNR) levels. Specifically, the progressive-hyperprior model consistently outperforms others in latency metrics, particularly in the 99.9th percentile waiting time-a measure indicating the maximum waiting time experienced by 99.9% of transmission instances-across all SNRs, and achieves higher throughput in low SNR scenarios. where Adaptive WebP fails.
- Abstract(参考訳): 無線通信では、特に動的チャネル条件下では、効率的な画像伝送は信頼性、スループット、レイテンシのバランスをとる必要がある。
本稿では,このような環境に合わせた学習画像圧縮(lic)に基づくアーキテクチャに対して,適応的でプログレッシブなパイプラインを提案する。
本稿では,ハイパープライアモデルとベクトル量子生成支援ネットワーク(VQGAN)の2つの最先端学習モデルについて検討する。
ハイパープライアモデルは、ボトルネック内のロスレス圧縮により優れた圧縮性能を達成するが、ビットエラーの影響を受けやすいため、エラー訂正や再送信機構を使用する必要がある。
対照的に、VQGANデコーダは、チャネル符号化がなくても、堅牢な画像再構成機能を示し、挑戦的な送信シナリオにおける信頼性を高めている。
両モデルのプログレッシブバージョンを提案し、不完全なチャネル条件下で部分的な画像伝送と復号を可能にする。
このプログレッシブアプローチは、粗悪なチャネル条件下で画像の整合性を維持するだけでなく、即時部分的な画像の可用性を可能にすることで遅延を大幅に低減する。
動的条件をシミュレートしたレイリーフェディング無線チャネルモデルを用いて,コダック高解像度画像データセットを用いてパイプラインの評価を行った。
その結果,プログレッシブトランスミッションフレームワークは,SNR(Signal-to-Noise Ratio)レベルの非プログレッシブな処理に比べて,スループットを維持したり,改善したりしながら,信頼性とレイテンシを向上させることが示唆された。
具体的には、プログレッシブ・ハイパープライア・モデルはレイテンシの指標、特に99.9パーセントの待ち時間において、すべてのSNRの送信インスタンスの99.9%の最大待ち時間を示し、低いSNRシナリオで高いスループットを達成する。
Adaptive WebP がフェールする。
関連論文リスト
- Diffusion-Aided Joint Source Channel Coding For High Realism Wireless Image Transmission [24.372996233209854]
DiffJSCCは条件拡散復調法により高現実性画像を生成する新しいフレームワークである。
768x512ピクセルのコダック画像を3072のシンボルで再現できる。
論文 参考訳(メタデータ) (2024-04-27T00:12:13Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Inlicit Neural representations (INRs) は、ビデオストレージと処理において有望なアプローチとして登場した。
本稿では,現在の暗黙的ビデオ表現手法のための普遍的なブースティングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T08:32:19Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression [18.05997169440533]
ConvNeXt-ChARMは,効率的なConvNeXtベースのトランスフォーメーションコーディングフレームワークである。
ConvNeXt-ChARMは、VVC参照エンコーダ(VTM-18.0)と最先端の学習画像圧縮手法であるSwinT-ChARMに対して、平均5.24%と1.22%と、一貫したBDレート(PSNR)の低下をもたらすことを示した。
論文 参考訳(メタデータ) (2023-07-12T11:45:54Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
ニューラル画像圧縮(NIC)のための絶対画像圧縮変換器(ICT)を提案する。
ICTは、潜在表現からグローバルコンテキストとローカルコンテキストの両方をキャプチャし、量子化された潜在表現の分布をパラメータ化する。
我々のフレームワークは、多目的ビデオ符号化(VVC)参照符号化(VTM-18.0)とニューラルスウィンT-ChARMに対する符号化効率とデコーダ複雑性のトレードオフを大幅に改善する。
論文 参考訳(メタデータ) (2023-07-05T13:17:14Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
深層畳み込みニューラルネットワーク(CNN)は、過去5年間で低レベルビジョンに広く適用されています。
画像超解像のための非対称ブロック(AB)、mem?ory拡張ブロック(MEB)、高周波数特徴強調ブロック(HFFEB)からなる非対称CNN(ACNet)を提案する。
我々のACNetは、ブラインドノイズの単一画像超解像(SISR)、ブラインドSISR、ブラインドSISRを効果的に処理できる。
論文 参考訳(メタデータ) (2021-03-25T07:10:46Z) - Wireless Image Retrieval at the Edge [20.45405359815043]
本研究では、エッジデバイスが画像をキャプチャし、エッジサーバから同様の画像を検索するために使用される無線エッジにおける画像検索問題について検討する。
我々の目標は、無線リンクに対する電力及び帯域幅制約下での検索タスクの精度を最大化することである。
本稿では,デジタル通信とアナログ通信の2つの方法を提案する。
論文 参考訳(メタデータ) (2020-07-21T16:15:40Z) - Attention Based Real Image Restoration [48.933507352496726]
深層畳み込みニューラルネットワークは、合成劣化を含む画像に対してより良い性能を発揮する。
本稿では,新しい1段ブラインド実画像復元ネットワーク(R$2$Net)を提案する。
論文 参考訳(メタデータ) (2020-04-26T04:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。