論文の概要: Comparison of Multilingual and Bilingual Models for Satirical News Detection of Arabic and English
- arxiv url: http://arxiv.org/abs/2411.10730v1
- Date: Sat, 16 Nov 2024 07:49:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:20.928538
- Title: Comparison of Multilingual and Bilingual Models for Satirical News Detection of Arabic and English
- Title(参考訳): アラビア語と英語の主語ニュース検出のための多言語モデルとバイリンガルモデルの比較
- Authors: Omar W. Abdalla, Aditya Joshi, Rahat Masood, Salil S. Kanhere,
- Abstract要約: 風刺的なニュースは、文化的、社会的背景の異なる個人によって誤解されることが多い。
本研究は、英語とアラビア語の多言語風刺検出手法を活用することによって、真実のニュースと風刺を区別することの課題に対処する。
- 参考スコア(独自算出の注目度): 8.196867780151651
- License:
- Abstract: Satirical news is real news combined with a humorous comment or exaggerated content, and it often mimics the format and style of real news. However, satirical news is often misunderstood as misinformation, especially by individuals from different cultural and social backgrounds. This research addresses the challenge of distinguishing satire from truthful news by leveraging multilingual satire detection methods in English and Arabic. We explore both zero-shot and chain-of-thought (CoT) prompting using two language models, Jais-chat(13B) and LLaMA-2-chat(7B). Our results show that CoT prompting offers a significant advantage for the Jais-chat model over the LLaMA-2-chat model. Specifically, Jais-chat achieved the best performance, with an F1-score of 80\% in English when using CoT prompting. These results highlight the importance of structured reasoning in CoT, which enhances contextual understanding and is vital for complex tasks like satire detection.
- Abstract(参考訳): Satirical Newsは、ユーモラスなコメントや誇張されたコンテンツと組み合わさった真のニュースであり、しばしば実際のニュースの形式やスタイルを模倣する。
しかし、風刺的なニュースはしばしば誤報と誤解され、特に文化的・社会的背景の異なる個人によって誤解される。
本研究は、英語とアラビア語の多言語風刺検出手法を活用することによって、真実のニュースと風刺を区別することの課題に対処する。
本稿では,Jais-chat(13B)とLLaMA-2-chat(7B)の2つの言語モデルを用いて,ゼロショットとチェーン・オブ・シークレット(CoT)の両方を探索する。
以上の結果から,CoTプロンプトはLLaMA-2-chatモデルよりもJais-chatモデルに有利であることがわかった。
特に、Jais-chatは、CoTプロンプトを使用する場合、英語で80%のF1スコアで最高のパフォーマンスを達成した。
これらの結果は、文脈的理解を高め、風刺検出のような複雑なタスクに不可欠であるCoTにおける構造化推論の重要性を強調している。
関連論文リスト
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Fake News in Sheep's Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks [60.14025705964573]
SheepDogは、ニュースの正確性を決定する際に、スタイルよりもコンテンツを優先する、スタイルに反する偽ニュース検出ツールだ。
SheepDog はこのレジリエンスを,(1) LLM を利用したニュースリフレーミング,(2) 異なるスタイルに対応する記事のカスタマイズによる学習プロセスへのスタイル多様性の注入,(2) スタイルの異なるリフレーミング間で一貫した妥当性予測を保証するスタイル非依存のトレーニング,(3) LLM からコンテンツ中心のガイドラインを抽出して偽ニュースを抽出するコンテンツ中心の属性を通じて達成する。
論文 参考訳(メタデータ) (2023-10-16T21:05:12Z) - Translate to Disambiguate: Zero-shot Multilingual Word Sense
Disambiguation with Pretrained Language Models [67.19567060894563]
事前訓練された言語モデル(PLM)は、豊富な言語間知識を学習し、多様なタスクでうまく機能するように微調整することができる。
C-WLT(Contextual Word-Level Translation)を用いた言語間単語感覚の捉え方の検討を行った。
モデルのサイズが大きくなるにつれて、PLMはより言語間単語認識の知識をエンコードし、WLT性能を改善するためのコンテキストを良くする。
論文 参考訳(メタデータ) (2023-04-26T19:55:52Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
言語モデルの限られた能力は,1)暗黙的な言語モデリング,2)一方向の特徴表現,3)雑音入力を伴う言語モデルから生じる。
シーンテキストスポッティングのための自律的で双方向かつ反復的なABINet++を提案する。
論文 参考訳(メタデータ) (2022-11-19T03:50:33Z) - Incongruity Detection between Bangla News Headline and Body Content
through Graph Neural Network [0.0]
ニュースの見出しと内容の一致は、読者を惹きつけるのに使用される詐欺の一般的な方法である。
本稿では,Banglaニュースの見出しとコンテンツ段落の類似性と矛盾を効果的に学習するグラフベースの階層型デュアルエンコーダモデルを提案する。
提案したBanglaグラフベースのニューラルネットワークモデルは,さまざまなBanglaニュースデータセットに対して90%以上の精度を実現する。
論文 参考訳(メタデータ) (2022-10-26T20:57:45Z) - SimulSLT: End-to-End Simultaneous Sign Language Translation [55.54237194555432]
既存の手話翻訳手法では、翻訳を開始する前にすべてのビデオを読む必要がある。
我々は,最初のエンドツーエンド同時手話翻訳モデルであるSimulSLTを提案する。
SimulSLTは最新のエンドツーエンドの非同時手話翻訳モデルを超えるBLEUスコアを達成する。
論文 参考訳(メタデータ) (2021-12-08T11:04:52Z) - Hostility Detection and Covid-19 Fake News Detection in Social Media [1.3499391168620467]
我々は,Hindi BERTとHindi FastTextモデルを用いて,乱用言語検出と特徴抽出を併用したモデルを構築した。
また、英語のツイートでCovid-19に関連する偽ニュースを識別するためのモデルを構築しています。
論文 参考訳(メタデータ) (2021-01-15T03:24:36Z) - "Did you really mean what you said?" : Sarcasm Detection in
Hindi-English Code-Mixed Data using Bilingual Word Embeddings [0.0]
我々は、カスタム単語埋め込みを訓練するためのツイートのコーパスと、皮肉検出のためのラベル付きHinglishデータセットを提示する。
我々は,ヒンディー語と英語の混合ツイートにおける皮肉検出の問題に対処するために,ディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-01T11:41:44Z) - Birds of a Feather Flock Together: Satirical News Detection via Language
Model Differentiation [7.556286423133077]
風刺的なニュースでは、文脈の語彙的・実践的な属性が読者を楽しませる上で重要な要素である。
本稿では,風刺ニュースと真のニュースを区別する手法を提案する。
論文 参考訳(メタデータ) (2020-07-04T18:46:36Z) - Satirical News Detection with Semantic Feature Extraction and
Game-theoretic Rough Sets [5.326582776477692]
本稿では,風刺的なニュースツイートを検出するための意味的特徴に基づくアプローチを提案する。
特徴は、句、実体、および主節と相対節の間の矛盾を探索することによって抽出される。
確率しきい値がゲーム平衡と繰り返し学習機構によって導出される風刺ニュースを検出するために,ゲーム理論ラフセットモデルを適用した。
論文 参考訳(メタデータ) (2020-04-08T03:22:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。