論文の概要: An Oversampling-enhanced Multi-class Imbalanced Classification Framework for Patient Health Status Prediction Using Patient-reported Outcomes
- arxiv url: http://arxiv.org/abs/2411.10819v1
- Date: Sat, 16 Nov 2024 14:54:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:28:32.200779
- Title: An Oversampling-enhanced Multi-class Imbalanced Classification Framework for Patient Health Status Prediction Using Patient-reported Outcomes
- Title(参考訳): 患者報告結果を用いた患者健康状態予測のためのオーバーサンプリング型マルチクラス不均衡分類フレームワーク
- Authors: Yang Yan, Zhong Chen, Cai Xu, Xinglei Shen, Jay Shiao, John Einck, Ronald C Chen, Hao Gao,
- Abstract要約: 放射線治療を受けたがん患者から直接収集された患者報告結果(PROs)は、臨床医が潜在的毒性について助言する患者を支援する上で重要な役割を担っている。
本稿では,がん光子・プロトン療法センターのproBoostを用いて,健康状態に関連する患者の予後を予測するためのさまざまな機械学習手法について検討する。
- 参考スコア(独自算出の注目度): 6.075416560330067
- License:
- Abstract: Patient-reported outcomes (PROs) directly collected from cancer patients being treated with radiation therapy play a vital role in assisting clinicians in counseling patients regarding likely toxicities. Precise prediction and evaluation of symptoms or health status associated with PROs are fundamental to enhancing decision-making and planning for the required services and support as patients transition into survivorship. However, the raw PRO data collected from hospitals exhibits some intrinsic challenges such as incomplete item reports and imbalance patient toxicities. To the end, in this study, we explore various machine learning techniques to predict patient outcomes related to health status such as pain levels and sleep discomfort using PRO datasets from a cancer photon/proton therapy center. Specifically, we deploy six advanced machine learning classifiers -- Random Forest (RF), XGBoost, Gradient Boosting (GB), Support Vector Machine (SVM), Multi-Layer Perceptron with Bagging (MLP-Bagging), and Logistic Regression (LR) -- to tackle a multi-class imbalance classification problem across three prevalent cancer types: head and neck, prostate, and breast cancers. To address the class imbalance issue, we employ an oversampling strategy, adjusting the training set sample sizes through interpolations of in-class neighboring samples, thereby augmenting minority classes without deviating from the original skewed class distribution. Our experimental findings across multiple PRO datasets indicate that the RF and XGB methods achieve robust generalization performance, evidenced by weighted AUC and detailed confusion matrices, in categorizing outcomes as mild, intermediate, and severe post-radiation therapy. These results underscore the models' effectiveness and potential utility in clinical settings.
- Abstract(参考訳): 放射線治療を受けたがん患者から直接収集された患者報告結果(PROs)は、臨床医が潜在的毒性について助言する患者を支援する上で重要な役割を担っている。
PROに関連する症状や健康状態の正確な予測と評価は、患者が生き残るために必要なサービスや支援に関する意思決定と計画の強化に不可欠である。
しかし, 病院から収集した生Proデータは, 不完全な項目報告や患者毒性の不均衡といった本質的な課題を呈している。
そこで本研究では,がん光子・プロトン療法センターのProperデータセットを用いて,痛みレベルや睡眠不快といった健康状態に関連する患者を予測するための機械学習手法について検討した。
具体的には,ランダムフォレスト (RF), XGBoost, Gradient Boosting (GB), Support Vector Machine (SVM), Multi-Layer Perceptron with Bagging (MLP-Bagging), Logistic Regression (LR) の6つの高度な機械学習分類器をデプロイし,頭頸部癌,前立腺癌,乳癌の3種類の多クラス不均衡分類問題に対処する。
クラス不均衡問題に対処するために,クラス内のサンプルを補間することで,トレーニングセットのサンプルサイズを調整し,元のスキュートクラス分布から逸脱することなくマイノリティクラスを拡大するオーバーサンプリング戦略を採用した。
RF法とXGB法は, 重み付きAUCおよび詳細な混乱行列を用いて, 軽度, 中等度, 重度の放射線照射後治療として分類し, 堅牢な一般化性能を達成できることが示唆された。
これらの結果は,臨床におけるモデルの有効性と有用性を明らかにするものである。
関連論文リスト
- Enhancing Readmission Prediction with Deep Learning: Extracting Biomedical Concepts from Clinical Texts [0.26813152817733554]
本研究は,30日以内の患者の寛解をテキストマイニング技術を用いて予測することに焦点を当てた。
この目的のために分類モデルを開発するために,様々な機械学習および深層学習手法が用いられた。
論文 参考訳(メタデータ) (2024-03-12T09:03:44Z) - Survival Prediction from Imbalance colorectal cancer dataset using
hybrid sampling methods and tree-based classifiers [0.0]
本稿では,大腸癌患者の1年,3年,5年生存率を予測するアルゴリズムの開発に焦点をあてる。
そこで本研究では,正の正の確率を高めるために,標準バランス手法のパイプラインを生成する手法を提案する。
本手法は大腸癌患者の死亡率予測を有意に改善する。
論文 参考訳(メタデータ) (2023-09-04T19:48:56Z) - An interpretable machine learning system for colorectal cancer diagnosis from pathology slides [2.7968867060319735]
本研究は,約10,500個のWSIを用いて,最大規模のWSI南極サンプルデータセットを用いて行った。
提案手法は, パッチベースのタイルに対して, 異形成の重症度に基づくクラスを推定する。
病理学者が導入したドメイン知識を活用するために、解釈可能な混合スーパービジョンスキームで訓練されている。
論文 参考訳(メタデータ) (2023-01-06T17:10:32Z) - Metastatic Cancer Outcome Prediction with Injective Multiple Instance
Pooling [1.0965065178451103]
我々は2つの公開データセットを処理し、転移性癌の予後予測を研究するために合計341人のベンチマークコホートを設定した。
結果予測に適した2つのインジェクティブ複数インスタンスプーリング関数を提案する。
本研究は, 肺がん非小細胞癌における複数症例の学習が, 頭頸部CT結果予測ベンチマークの課題において, 最先端のパフォーマンスを達成できることを示唆するものである。
論文 参考訳(メタデータ) (2022-03-09T16:58:03Z) - Multi-task fusion for improving mammography screening data
classification [3.7683182861690843]
まず、個別のタスク固有のモデルのセットをトレーニングするパイプラインアプローチを提案する。
次に、標準モデルの集合戦略とは対照的に、その融合について検討する。
我々の融合アプローチは、標準モデルのアンサンブルに比べてAUCのスコアを最大0.04向上させる。
論文 参考訳(メタデータ) (2021-12-01T13:56:27Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。