Adaptive Learning of Design Strategies over Non-Hierarchical Multi-Fidelity Models via Policy Alignment
- URL: http://arxiv.org/abs/2411.10841v1
- Date: Sat, 16 Nov 2024 16:54:33 GMT
- Title: Adaptive Learning of Design Strategies over Non-Hierarchical Multi-Fidelity Models via Policy Alignment
- Authors: Akash Agrawal, Christopher McComb,
- Abstract summary: Multi-fidelity Reinforcement Learning frameworks enhance the efficiency of engineering design by leveraging analysis models with varying levels of accuracy and computational costs.
This work proposes ALPHA, a novel multi-fidelity RL framework to efficiently learn a high-fidelity policy by adaptively leveraging an arbitrary set of non-hierarchical, heterogeneous, low-fidelity models alongside a high-fidelity model.
The effectiveness of ALPHA is demonstrated in analytical test optimization and octocopter design problems, utilizing two low-fidelity models alongside a high-fidelity one.
- Score: 0.0
- License:
- Abstract: Multi-fidelity Reinforcement Learning (RL) frameworks significantly enhance the efficiency of engineering design by leveraging analysis models with varying levels of accuracy and computational costs. The prevailing methodologies, characterized by transfer learning, human-inspired strategies, control variate techniques, and adaptive sampling, predominantly depend on a structured hierarchy of models. However, this reliance on a model hierarchy overlooks the heterogeneous error distributions of models across the design space, extending beyond mere fidelity levels. This work proposes ALPHA (Adaptively Learned Policy with Heterogeneous Analyses), a novel multi-fidelity RL framework to efficiently learn a high-fidelity policy by adaptively leveraging an arbitrary set of non-hierarchical, heterogeneous, low-fidelity models alongside a high-fidelity model. Specifically, low-fidelity policies and their experience data are dynamically used for efficient targeted learning, guided by their alignment with the high-fidelity policy. The effectiveness of ALPHA is demonstrated in analytical test optimization and octocopter design problems, utilizing two low-fidelity models alongside a high-fidelity one. The results highlight ALPHA's adaptive capability to dynamically utilize models across time and design space, eliminating the need for scheduling models as required in a hierarchical framework. Furthermore, the adaptive agents find more direct paths to high-performance solutions, showing superior convergence behavior compared to hierarchical agents.
Related papers
- Inverse-Q*: Token Level Reinforcement Learning for Aligning Large Language Models Without Preference Data [25.844968873581244]
Inverse-Q* is an innovative framework that transcends traditional RL methods by optimizing token-level reinforcement learning.
Our results suggest that Inverse-Q* offers a practical and robust alternative to conventional RLHF approaches.
arXiv Detail & Related papers (2024-08-27T08:43:32Z) - Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
Multi-fidelity machine learning methods integrate scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data.
We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains.
arXiv Detail & Related papers (2024-07-21T10:40:50Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Adaptive Reliability Analysis for Multi-fidelity Models using a
Collective Learning Strategy [6.368679897630892]
This study presents a new approach called adaptive multi-fidelity Gaussian process for reliability analysis (AMGPRA)
It is shown that the proposed method achieves similar or higher accuracy with reduced computational costs compared to state-of-the-art single and multi-fidelity methods.
A key application of AMGPRA is high-fidelity fragility modeling using complex and costly physics-based computational models.
arXiv Detail & Related papers (2021-09-21T14:42:58Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
This paper investigates the model-based methods in multi-agent reinforcement learning (MARL)
We propose a novel decentralized model-based MARL method, named Adaptive Opponent-wise Rollout Policy (AORPO)
arXiv Detail & Related papers (2021-05-07T16:20:22Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders [22.54887526392739]
We propose a novel approach to training models with deep-latent hierarchies based on Optimal Transport.
We show that our method enables the generative model to fully leverage its deep-latent hierarchy, avoiding the well known "latent variable collapse" issue of VAEs.
arXiv Detail & Related papers (2020-10-07T15:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.