ROCM: RLHF on consistency models
- URL: http://arxiv.org/abs/2503.06171v1
- Date: Sat, 08 Mar 2025 11:19:48 GMT
- Title: ROCM: RLHF on consistency models
- Authors: Shivanshu Shekhar, Tong Zhang,
- Abstract summary: We propose a reward optimization framework for applying RLHF to consistency models.<n>We investigate various $f$-divergences as regularization strategies, striking a balance between reward and model consistency.
- Score: 8.905375742101707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have revolutionized generative modeling in continuous domains like image, audio, and video synthesis. However, their iterative sampling process leads to slow generation and inefficient training, challenges that are further exacerbated when incorporating Reinforcement Learning from Human Feedback (RLHF) due to sparse rewards and long time horizons. Consistency models address these issues by enabling single-step or efficient multi-step generation, significantly reducing computational costs. In this work, we propose a direct reward optimization framework for applying RLHF to consistency models, incorporating distributional regularization to enhance training stability and prevent reward hacking. We investigate various $f$-divergences as regularization strategies, striking a balance between reward maximization and model consistency. Unlike policy gradient methods, our approach leverages first-order gradients, making it more efficient and less sensitive to hyperparameter tuning. Empirical results show that our method achieves competitive or superior performance compared to policy gradient based RLHF methods, across various automatic metrics and human evaluation. Additionally, our analysis demonstrates the impact of different regularization techniques in improving model generalization and preventing overfitting.
Related papers
- A Unified Pairwise Framework for RLHF: Bridging Generative Reward Modeling and Policy Optimization [18.892740849961456]
Reinforcement Learning from Human Feedback (RLHF) has emerged as an important paradigm for aligning large language models with human preferences during post-training.
This paper introduces Pairwise-RL, a RLHF framework that addresses these challenges through a combination of generative reward modeling and a pairwise proximal policy optimization algorithm.
arXiv Detail & Related papers (2025-04-07T11:34:48Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.
To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.
Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - Online Reward-Weighted Fine-Tuning of Flow Matching with Wasserstein Regularization [14.320131946691268]
We propose an easy-to-use and theoretically sound fine-tuning method for flow-based generative models.
By introducing an online rewardweighting mechanism, our approach guides the model to prioritize high-reward regions in the data manifold.
Our method achieves optimal policy convergence while allowing controllable trade-offs between reward and diversity.
arXiv Detail & Related papers (2025-02-09T22:45:15Z) - Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning [0.0]
Fine-tuning foundation models via reinforcement learning (RL) has proven promising for aligning to downstream objectives.
We exploit the hierarchical nature of diffusion models (DMs) and train them dynamically at each epoch with a tailored RL method.
We show that models trained with HRF achieve better preservation of diversity in downstream tasks, thus enhancing the fine-tuning robustness and at uncompromising mean rewards.
arXiv Detail & Related papers (2024-10-10T19:06:23Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.<n>The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.<n>We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Scaling Laws for Reward Model Overoptimization in Direct Alignment Algorithms [50.808123629394245]
Direct Alignment Algorithms (DDAs) like Direct Preference Optimization have emerged as alternatives to the classical RLHF pipeline.
This work formulates and formalizes the reward over-optimization or hacking problem for DAAs and explores its consequences across objectives, training regimes, and model scales.
arXiv Detail & Related papers (2024-06-05T03:41:37Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem.
PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins.
Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling.
arXiv Detail & Related papers (2024-04-01T07:49:11Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.