Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation
- URL: http://arxiv.org/abs/2411.10845v1
- Date: Sat, 16 Nov 2024 17:31:37 GMT
- Title: Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation
- Authors: Jaisidh Singh, Sonam Singh, Amit Arvind Kale, Harsh K Gandhi,
- Abstract summary: This paper presents a novel method for discovering systematic errors in segmentation models.
We leverage multimodal foundation models to retrieve errors and use conceptual linkage along with erroneous nature to study the systematic nature of these errors.
Our work opens up the avenue to model analysis and intervention that have so far been underexplored in semantic segmentation.
- Score: 0.5242869847419834
- License:
- Abstract: This paper presents a novel method for discovering systematic errors in segmentation models. For instance, a systematic error in the segmentation model can be a sufficiently large number of misclassifications from the model as a parking meter for a target class of pedestrians. With the rapid deployment of these models in critical applications such as autonomous driving, it is vital to detect and interpret these systematic errors. However, the key challenge is automatically discovering such failures on unlabelled data and forming interpretable semantic sub-groups for intervention. For this, we leverage multimodal foundation models to retrieve errors and use conceptual linkage along with erroneous nature to study the systematic nature of these errors. We demonstrate that such errors are present in SOTA segmentation models (UperNet ConvNeXt and UperNet Swin) trained on the Berkeley Deep Drive and benchmark the approach qualitatively and quantitatively, showing its effectiveness by discovering coherent systematic errors for these models. Our work opens up the avenue to model analysis and intervention that have so far been underexplored in semantic segmentation.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
arXiv Detail & Related papers (2024-07-19T13:36:35Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
We present a novel application of explainable AI (XAI) for root-causing performance degradation in machine learning models.
A single feature corruption can cause cascading feature, label and concept drifts.
We have successfully applied this technique to improve the reliability of models used in personalized advertising.
arXiv Detail & Related papers (2024-03-04T19:38:50Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
This paper aims to improve model-based anomaly detection in CPPS by combining the learned timed automaton with a formal knowledge graph about the system.
Both the model and the detected anomalies are described in the knowledge graph in order to allow operators an easier interpretation of the model and the detected anomalies.
arXiv Detail & Related papers (2023-08-25T15:25:57Z) - Distilling Model Failures as Directions in Latent Space [87.30726685335098]
We present a scalable method for automatically distilling a model's failure modes.
We harness linear classifiers to identify consistent error patterns, and induce a natural representation of these failure modes as directions within the feature space.
We demonstrate that this framework allows us to discover and automatically caption challenging subpopulations within the training dataset, and intervene to improve the model's performance on these subpopulations.
arXiv Detail & Related papers (2022-06-29T16:35:24Z) - The Spotlight: A General Method for Discovering Systematic Errors in
Deep Learning Models [18.209010694469647]
This paper introduces a method for discovering systematic errors, which we call the spotlight.
Similar inputs tend to have similar representations in the final hidden layer of a neural network.
We leverage this structure by "shining a spotlight" on this representation space to find contiguous regions where the model performs poorly.
arXiv Detail & Related papers (2021-07-01T21:58:00Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Defuse: Harnessing Unrestricted Adversarial Examples for Debugging
Models Beyond Test Accuracy [11.265020351747916]
Defuse is a method to automatically discover and correct model errors beyond those available in test data.
We propose an algorithm inspired by adversarial machine learning techniques that uses a generative model to find naturally occurring instances misclassified by a model.
Defuse corrects the error after fine-tuning while maintaining generalization on the test set.
arXiv Detail & Related papers (2021-02-11T18:08:42Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.