論文の概要: Large Vision-Language Models for Remote Sensing Visual Question Answering
- arxiv url: http://arxiv.org/abs/2411.10857v1
- Date: Sat, 16 Nov 2024 18:32:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:41.515518
- Title: Large Vision-Language Models for Remote Sensing Visual Question Answering
- Title(参考訳): リモートセンシング型視覚質問応答のための大規模視覚言語モデル
- Authors: Surasakdi Siripong, Apirak Chaiyapan, Thanakorn Phonchai,
- Abstract要約: リモートセンシング視覚質問回答(RSVQA)は、複雑な衛星画像の自然言語質問への答えを解釈する難しいタスクである。
伝統的なアプローチは、しばしば別々の視覚特徴抽出器と言語処理モデルに依存しており、計算集約的で、オープンエンドの質問を扱う能力に制限がある。
RSVQAプロセスの合理化にLVLM(Large Vision-Language Model)を用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Remote Sensing Visual Question Answering (RSVQA) is a challenging task that involves interpreting complex satellite imagery to answer natural language questions. Traditional approaches often rely on separate visual feature extractors and language processing models, which can be computationally intensive and limited in their ability to handle open-ended questions. In this paper, we propose a novel method that leverages a generative Large Vision-Language Model (LVLM) to streamline the RSVQA process. Our approach consists of a two-step training strategy: domain-adaptive pretraining and prompt-based finetuning. This method enables the LVLM to generate natural language answers by conditioning on both visual and textual inputs, without the need for predefined answer categories. We evaluate our model on the RSVQAxBEN dataset, demonstrating superior performance compared to state-of-the-art baselines. Additionally, a human evaluation study shows that our method produces answers that are more accurate, relevant, and fluent. The results highlight the potential of generative LVLMs in advancing the field of remote sensing analysis.
- Abstract(参考訳): リモートセンシング視覚質問回答(RSVQA)は、複雑な衛星画像の自然言語質問への答えを解釈する難しいタスクである。
伝統的なアプローチは、しばしば別々の視覚特徴抽出器と言語処理モデルに依存しており、計算集約的で、オープンエンドの質問を扱う能力に制限がある。
本稿では,RSVQAプロセスの合理化にLVLM(Large Vision-Language Model)を用いた新しい手法を提案する。
このアプローチは、ドメイン適応型事前学習とプロンプトベースの微調整という2段階のトレーニング戦略で構成されている。
この方法により、LVLMは、事前に定義された回答カテゴリを必要とせずに、視覚とテキストの両方の入力を条件付けることで、自然言語の回答を生成することができる。
RSVQAxBENデータセットを用いて本モデルの評価を行い,最先端のベースラインと比較して優れた性能を示した。
さらに,人間の評価実験により,より正確で,関連性があり,流動的な回答が得られた。
その結果、リモートセンシング分析の分野を推し進める上で、生成型LVLMの可能性を浮き彫りにした。
関連論文リスト
- Learning to Ground VLMs without Forgetting [54.033346088090674]
我々は、既存の画像や言語理解スキルを忘れずに、事前訓練されたビジュアル言語モデルに視覚的接地能力を持たせるフレームワークであるLynXを紹介する。
モデルを効果的に訓練するために、私たちはSCouTと呼ばれる高品質な合成データセットを生成します。
我々はLynXを複数のオブジェクト検出および視覚的グラウンド化データセット上で評価し、オブジェクト検出、ゼロショットローカライゼーション、グラウンドド推論において強い性能を示す。
論文 参考訳(メタデータ) (2024-10-14T13:35:47Z) - Declarative Knowledge Distillation from Large Language Models for Visual Question Answering Datasets [9.67464173044675]
VQA(Visual Question Answering)は、画像に関する質問に答えるタスクである。
本稿では,Large Language Models (LLMs) からの宣言的知識蒸留手法を提案する。
以上の結果から,LSMから知識を抽出することは,データ駆動型ルール学習のアプローチ以外には有望な方向であることが確認された。
論文 参考訳(メタデータ) (2024-10-12T08:17:03Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - The curse of language biases in remote sensing VQA: the role of spatial
attributes, language diversity, and the need for clear evaluation [32.7348470366509]
RSVQAの目的は、リモートセンシング画像に関する自然言語で定式化された質問に答えることである。
言語バイアスの問題はしばしばリモートセンシングコミュニティで見過ごされている。
本研究の目的は,RSVQAにおける言語バイアスの問題を3重解析戦略を用いて強調することである。
論文 参考訳(メタデータ) (2023-11-28T13:45:15Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) は勾配のないフレームワークで、基礎となる視覚言語モデルを用いて画像に関する詳細な情報を抽出する。
その結果、VQAv2では3.85%(絶対)、A-OKVQAでは6.41%、VizWizでは7.94%の増加が見られた。
論文 参考訳(メタデータ) (2023-10-09T16:57:57Z) - Tackling VQA with Pretrained Foundation Models without Further Training [0.0]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて最先端の結果を得た。
これらのLCMの能力により、研究者は視覚的質問回答(VQA)の使用方法を模索している。
本稿では、VQA問題を解決するために、事前訓練されたLLMと他の基礎モデルを組み合わせる方法を検討する。
論文 参考訳(メタデータ) (2023-09-27T08:35:24Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
本稿では,知識に基づく視覚推論のための新しいフレームワークであるInteractive Prompting Visual Reasoner(IPVR)を提案する。
IPVRには3つのステージがある。
我々は,知識に基づく視覚的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-01-12T18:59:50Z) - From Easy to Hard: Learning Language-guided Curriculum for Visual
Question Answering on Remote Sensing Data [27.160303686163164]
リモートセンシングシーンに対する視覚的質問応答(VQA)は、インテリジェントな人-コンピュータインタラクションシステムにおいて大きな可能性を秘めている。
RSVQAデータセットにはオブジェクトアノテーションがないため、モデルが情報的領域表現を活用できない。
RSVQAタスクでは、各画像の難易度が明らかに異なる。
言語誘導の全体的特徴と地域的特徴を共同で抽出する多段階視覚特徴学習法を提案する。
論文 参考訳(メタデータ) (2022-05-06T11:37:00Z) - How to find a good image-text embedding for remote sensing visual
question answering? [41.0510495281302]
視覚的質問応答(VQA)がリモートセンシングに導入され、オーバーヘッド画像から情報を取り出すことが可能になった。
遠隔センシングにおけるVQAの文脈における3つの異なる融合手法について検討し,モデルの複雑さに関する精度の利得を解析した。
論文 参考訳(メタデータ) (2021-09-24T09:48:28Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
明示的な編集動作によって最小レベンシュテイン距離(MLD)を最適化する強化反復シーケンス編集(RISE)フレームワークを導入する。
RISEは会話の特徴に関連するトークンに注意を払うことができる。
2つのベンチマークデータセットの実験結果から、RISEは最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-30T08:44:19Z) - Visual Question Answering with Prior Class Semantics [50.845003775809836]
候補解のセマンティクスに関連する追加情報を利用する方法を示す。
セマンティック空間における回帰目標を用いて解答予測プロセスを拡張する。
提案手法は,様々な質問タイプに対して,一貫性と精度の向上をもたらす。
論文 参考訳(メタデータ) (2020-05-04T02:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。