論文の概要: Capturing Sparks of Abstraction for the ARC Challenge
- arxiv url: http://arxiv.org/abs/2411.11206v1
- Date: Sun, 17 Nov 2024 23:40:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:16.723537
- Title: Capturing Sparks of Abstraction for the ARC Challenge
- Title(参考訳): ARCチャレンジのための抽象の火花の捕獲
- Authors: Martin Andrews,
- Abstract要約: 商用のLarge Language Models(LLM)でさえ、多くの問題を"理解"するのに苦労しています。
LLM出力から'Sparks of Abstraction'を抽出できることを実証する。
arc-dsl-llm DSLフレームワークとGemini LLM生成データの両方がオープンソースになっている。
- 参考スコア(独自算出の注目度): 0.10878040851637999
- License:
- Abstract: Excellent progress has been made recently in solving ARC Challenge problems. However, it seems that new techniques may be required to push beyond 60% accuracy. Even commercial Large Language Models (LLMs) struggle to 'understand' many of the problems (when given the input and output grids), which makes discovering solutions by LLM-lead program search somewhat futile. In this work, LLM 'understanding' is attempted from a stronger starting position : An LLM is given complete solutions to tasks in code, and then asked to explain how the task is being solved at various levels of abstraction. Specifically, the LLM was given code solutions implemented in arc-dsl-llm (an LLM-legible version of Hodel's arc-dsl to obtain: (a) commented code; (b) code refactored into reusable functional chunks; (c) problem solution steps; and (d) high-level problem-solving tactics. We demonstrate that 'Sparks of Abstraction' can be extracted from the LLM output - in a form that could be used in downstream tasks with Local LLMs eligible to enter the ARC Prize. Both the arc-dsl-llm DSL framework (with the re-engineered solutions) and the Gemini LLM-generated data (along with the generation code) are made Open Source.
- Abstract(参考訳): ARCチャレンジ問題の解決において、近年、優れた進歩がなされている。
しかし、60%以上の精度を追求するためには、新しい技術が必要であると思われる。
商用のLarge Language Models (LLMs) でさえ、多くの問題(入力と出力のグリッドが与えられたとき)の「理解」に苦慮している。
LLMはコード内のタスクに対して完全なソリューションを与え、そのタスクがさまざまなレベルの抽象化でどのように解決されているかを説明するように求められます。
具体的には, LLM は arc-dsl-llm (Hodel の arc-dsl の LLM 対応版) で実装されたコードソリューションを与えられた。
(a)コメントコード
(b)再利用可能な機能チャンクにリファクタリングされたコード
(c)問題解決ステップ、及び
(d)ハイレベルな問題解決戦術。
LLMの出力から'Sparks of Abstraction'を抽出できることが実証された。
arc-dsl-llm DSLフレームワーク(再設計されたソリューションを含む)とGemini LLM生成データ(生成コードとともに)の両方がオープンソースにされている。
関連論文リスト
- Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
大規模言語モデル(LLM)は精度に苦しむが、リスクの高いアプリケーションには適さない。
コード生成を LLM で処理する部分と,形式的なメソッドベースのプログラム合成で処理する部分の2つに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T15:59:06Z) - Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
大きな言語モデル(LLM)は驚くほどよく機能し、多くのタスクにおいて人間の専門家より優れています。
本稿では,LLMに基づいてKGから推論経路を選択するパイプラインを統合し,最適化する。
また,思考の連鎖(CoT)とページランクに基づく,シンプルで効果的なサブグラフ検索手法を提案する。
論文 参考訳(メタデータ) (2024-04-16T08:28:16Z) - Turbulence: Systematically and Automatically Testing Instruction-Tuned
Large Language Models for Code [12.58098809948832]
本稿では,新しいベンチマークである乱流を用いて,命令調整型大規模言語モデル(LLM)のコード生成における正確性と堅牢性を評価する手法を提案する。
乱流は、多数の自然言語の$textitquestion templates$から成り、それぞれがプログラミングの問題であり、様々な形式で問うことができるようにパラメータ化されている。
単一の質問テンプレートから、LLM に $textitneighbourhood$ と非常によく似たプログラミング質問を問うことができ、各質問に対して返された結果の正しさを評価することができる。
論文 参考訳(メタデータ) (2023-12-22T17:29:08Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
検証可能な生成は、大きな言語モデル(LLM)がドキュメントをサポートするテキストを生成することを目的としている。
本稿では,LLatrieval (Large Language Model Verified Retrieval)を提案する。
実験により、LLatrievalは幅広いベースラインを著しく上回り、最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2023-11-14T01:38:02Z) - Large Language Model (LLM) as a System of Multiple Expert Agents: An
Approach to solve the Abstraction and Reasoning Corpus (ARC) Challenge [20.802440121949072]
我々はLarge Language Models (LLMs) を用いたARCチャレンジの解決を試みる。
入力画像を複数の適切なテキストベース抽象空間に変換する。
次に、LLMの連想力を利用して、入出力関係を導出する。
論文 参考訳(メタデータ) (2023-10-08T12:37:28Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
実用的で影響力のある応用がいくつかあるので、長文質問応答(LFQA)に焦点を当てる。
本稿では,要約の要約から質問生成手法を提案し,長い文書の要約からフォローアップ質問を生成することで,困難な設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-09-15T07:22:56Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。