論文の概要: Establishing Minimum Elements for Effective Vulnerability Management in AI Software
- arxiv url: http://arxiv.org/abs/2411.11317v1
- Date: Mon, 18 Nov 2024 06:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:00.473879
- Title: Establishing Minimum Elements for Effective Vulnerability Management in AI Software
- Title(参考訳): AIソフトウェアにおける効果的な脆弱性管理のための最小要素の確立
- Authors: Mohamad Fazelnia, Sara Moshtari, Mehdi Mirakhorli,
- Abstract要約: 本稿では,AI脆弱性管理の最小要素と人工知能脆弱性データベース(AIVD)の確立について論じる。
AI脆弱性の公開、分析、カタログ化、文書化のための標準化されたフォーマットとプロトコルを提供する。
- 参考スコア(独自算出の注目度): 4.067778725390327
- License:
- Abstract: In the rapidly evolving field of artificial intelligence (AI), the identification, documentation, and mitigation of vulnerabilities are paramount to ensuring robust and secure systems. This paper discusses the minimum elements for AI vulnerability management and the establishment of an Artificial Intelligence Vulnerability Database (AIVD). It presents standardized formats and protocols for disclosing, analyzing, cataloging, and documenting AI vulnerabilities. It discusses how such an AI incident database must extend beyond the traditional scope of vulnerabilities by focusing on the unique aspects of AI systems. Additionally, this paper highlights challenges and gaps in AI Vulnerability Management, including the need for new severity scores, weakness enumeration systems, and comprehensive mitigation strategies specifically designed to address the multifaceted nature of AI vulnerabilities.
- Abstract(参考訳): 人工知能(AI)の急速に発展する分野では、脆弱性の識別、文書化、緩和が、堅牢でセキュアなシステムを保証する上で最重要である。
本稿では,AI脆弱性管理の最小要素とAIVD(Artificial Intelligence Vulnerability Database)の確立について論じる。
AI脆弱性の公開、分析、カタログ化、文書化のための標準化されたフォーマットとプロトコルを提供する。
このようなAIインシデントデータベースが、AIシステムのユニークな側面に注目して、従来の脆弱性の範囲を越えて拡張する必要があるかについて議論する。
さらに、AI脆弱性管理における課題とギャップを強調し、新たな重大度スコア、弱点列挙システム、AI脆弱性の多面的性質に対処するために特別に設計された包括的な緩和戦略の必要性について述べる。
関連論文リスト
- Towards Robust and Secure Embodied AI: A Survey on Vulnerabilities and Attacks [22.154001025679896]
ロボットや自動運転車を含む身体的AIシステムは、現実のアプリケーションにますます統合されている。
これらの脆弱性は、センサーのスプーフィング、敵攻撃、タスクおよび動作計画における失敗を通じて現れる。
論文 参考訳(メタデータ) (2025-02-18T03:38:07Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処しなければならない。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
論文 参考訳(メタデータ) (2025-01-09T11:38:58Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Adversarial Machine Learning and Cybersecurity: Risks, Challenges, and
Legal Implications [0.4665186371356556]
2022年7月、ジョージタウン大学のCenter for Security and Emerging TechnologyとStanford Cyber Policy CenterのGeopolitics, Technology, and Governanceプログラムが、人工知能システムの脆弱性と従来型のソフトウェア脆弱性との関係を調べる専門家のワークショップを開催した。
議論されたトピックは、AI脆弱性が標準的なサイバーセキュリティプロセスの下でどのように扱われるか、現在の障壁がAI脆弱性に関する情報の正確な共有を妨げていること、AIシステムに対する敵対的攻撃に関連する法的問題、政府支援がAI脆弱性の管理と緩和を改善する可能性のある潜在的な領域である。
論文 参考訳(メタデータ) (2023-05-23T22:27:53Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Estimating the Brittleness of AI: Safety Integrity Levels and the Need
for Testing Out-Of-Distribution Performance [0.0]
AI(Test, Evaluation, Verification, and Validation for Artificial Intelligence)は、AI研究者が生み出した経済的、社会的報酬を制限することを脅かす課題である。
本稿では,いずれもDeep Neural Networksを定めていないことを論じる。
論文 参考訳(メタデータ) (2020-09-02T03:33:40Z) - Vulnerabilities of Connectionist AI Applications: Evaluation and Defence [0.0]
この記事では、コネクショナリスト人工知能(AI)アプリケーションのITセキュリティを扱い、完全性への脅威に焦点を当てます。
脅威の包括的リストと軽減の可能性は、最先端の文献をレビューすることによって提示される。
緩和に関する議論は同様に、AIシステム自体のレベルに限定されず、むしろサプライチェーンの文脈でAIシステムを見ることを提唱している。
論文 参考訳(メタデータ) (2020-03-18T12:33:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。