論文の概要: Zero-Shot Load Forecasting with Large Language Models
- arxiv url: http://arxiv.org/abs/2411.11350v1
- Date: Mon, 18 Nov 2024 07:39:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:28.215524
- Title: Zero-Shot Load Forecasting with Large Language Models
- Title(参考訳): 大規模言語モデルによるゼロショット負荷予測
- Authors: Wenlong Liao, Zhe Yang, Mengshuo Jia, Christian Rehtanz, Jiannong Fang, Fernando Porté-Agel,
- Abstract要約: 本稿では,Chronos モデルで表される高度な LLM フレームワークを用いたゼロショット負荷予測手法を提案する。
トレーニング済みの広範な知識を利用することで、Chronosモデルは、広範なデータ固有のトレーニングを必要とせずに、データスカースシナリオの正確な負荷予測を可能にする。
- 参考スコア(独自算出の注目度): 40.604618284659736
- License:
- Abstract: Deep learning models have shown strong performance in load forecasting, but they generally require large amounts of data for model training before being applied to new scenarios, which limits their effectiveness in data-scarce scenarios. Inspired by the great success of pre-trained language models (LLMs) in natural language processing, this paper proposes a zero-shot load forecasting approach using an advanced LLM framework denoted as the Chronos model. By utilizing its extensive pre-trained knowledge, the Chronos model enables accurate load forecasting in data-scarce scenarios without the need for extensive data-specific training. Simulation results across five real-world datasets demonstrate that the Chronos model significantly outperforms nine popular baseline models for both deterministic and probabilistic load forecasting with various forecast horizons (e.g., 1 to 48 hours), even though the Chronos model is neither tailored nor fine-tuned to these specific load datasets. Notably, Chronos reduces root mean squared error (RMSE), continuous ranked probability score (CRPS), and quantile score (QS) by approximately 7.34%-84.30%, 19.63%-60.06%, and 22.83%-54.49%, respectively, compared to baseline models. These results highlight the superiority and flexibility of the Chronos model, positioning it as an effective solution in data-scarce scenarios.
- Abstract(参考訳): ディープラーニングモデルは、負荷予測において強力なパフォーマンスを示しているが、一般的には、新しいシナリオに適用される前に、モデルトレーニングに大量のデータを必要とする。
自然言語処理における事前学習言語モデル(LLM)の大成功に触発されて,Chronosモデルとして表現された高度なLLMフレームワークを用いたゼロショット負荷予測手法を提案する。
トレーニング済みの広範な知識を利用することで、Chronosモデルは、広範なデータ固有のトレーニングを必要とせずに、データスカースシナリオの正確な負荷予測を可能にする。
実世界の5つのデータセットのシミュレーション結果から、クロノスモデルは、これらの特定の負荷データセットに合わせて調整も微調整もされていないにもかかわらず、決定論的および確率的負荷予測において、様々な予測水平線(例:1時間から48時間)で9つの一般的なベースラインモデルよりも大幅に優れていることが示された。
特にクロノスは、ベースラインモデルと比較して、ルート平均二乗誤差(RMSE)、連続ランク確率スコア(CRPS)、量子化スコア(QS)を約7.34%-84.30%、19.63%-60.06%、22.83%-54.49%削減している。
これらの結果は、Chronosモデルの優位性と柔軟性を強調し、データスカースシナリオにおける効果的なソリューションとして位置づけている。
関連論文リスト
- GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting [24.06534393565697]
時系列予測は多くのビジネス問題において最も不可欠でユビキタスなタスクの1つである。
本稿では,多種多様なアイテムの今後の需要を正確に予測できる,シンプルかつ強力なフレームワークであるフォレスティング・オーケストラ(Forchestra)を提案する。
論文 参考訳(メタデータ) (2024-02-29T18:01:07Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Evaluation of Time-Series Forecasting Models for Chickenpox Cases
Estimation in Hungary [0.0]
我々は時系列予測技術を用いて,ニワトリの今後の発生をモデル化し,予測する。
ハンガリーが収集したデータセット上で,複数のモデルとデータ前処理技術を実装し,シミュレーションする。
論文 参考訳(メタデータ) (2022-09-28T14:27:07Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - Reinforcement Learning based dynamic weighing of Ensemble Models for
Time Series Forecasting [0.8399688944263843]
データモデリングのために選択されたモデルが(線形/非線形、静的/動的)異なるモデルと独立(最小相関)モデルである場合、予測の精度が向上することが知られている。
アンサンブルモデルを重み付けするために文献で提案された様々なアプローチは、静的な重みセットを使用する。
この問題に対処するため、Reinforcement Learning (RL)アプローチでは、各モデルの重み付けを異なるタイミングで動的に割り当て、更新する。
論文 参考訳(メタデータ) (2020-08-20T10:40:42Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
我々は、統計的、機械学習、ディープラーニングモデルの集合から成り立つ、非常に堅牢で正確な株価予測の枠組みを提示する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
統計,機械学習,深層学習を組み合わせたモデル構築の凝集的アプローチは,株価データの揮発性およびランダムな動きパターンから極めて効果的に学習できる,と我々は主張する。
論文 参考訳(メタデータ) (2020-04-17T19:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。