論文の概要: A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting
- arxiv url: http://arxiv.org/abs/2402.19402v1
- Date: Thu, 29 Feb 2024 18:01:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 13:36:42.775980
- Title: A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting
- Title(参考訳): 需要予測のためのスケーラブルで転送可能な時系列予測フレームワーク
- Authors: Young-Jin Park, Donghyun Kim, Fr\'ed\'eric Odermatt, Juho Lee,
Kyung-Min Kim
- Abstract要約: 時系列予測は多くのビジネス問題において最も不可欠でユビキタスなタスクの1つである。
本稿では,多種多様なアイテムの今後の需要を正確に予測できる,シンプルかつ強力なフレームワークであるフォレスティング・オーケストラ(Forchestra)を提案する。
- 参考スコア(独自算出の注目度): 24.06534393565697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting is one of the most essential and ubiquitous tasks in
many business problems, including demand forecasting and logistics
optimization. Traditional time series forecasting methods, however, have
resulted in small models with limited expressive power because they have
difficulty in scaling their model size up while maintaining high accuracy. In
this paper, we propose Forecasting orchestra (Forchestra), a simple but
powerful framework capable of accurately predicting future demand for a diverse
range of items. We empirically demonstrate that the model size is scalable to
up to 0.8 billion parameters. The proposed method not only outperforms existing
forecasting models with a significant margin, but it could generalize well to
unseen data points when evaluated in a zero-shot fashion on downstream
datasets. Last but not least, we present extensive qualitative and quantitative
studies to analyze how the proposed model outperforms baseline models and
differs from conventional approaches. The original paper was presented as a
full paper at ICDM 2022 and is available at:
https://ieeexplore.ieee.org/document/10027662.
- Abstract(参考訳): 時系列予測は、需要予測や物流最適化を含む多くのビジネス問題において、最も不可欠でユビキタスなタスクの1つである。
しかし、従来の時系列予測手法は、精度を維持しながらモデルサイズをスケールアップすることが困難であるため、表現力に乏しい小型モデルを生み出している。
本稿では,様々な項目に対する将来の需要を正確に予測できる簡易かつ強力なフレームワークである予測オーケストラ(forchestra)を提案する。
モデルサイズが最大0.8億のパラメータに拡張可能であることを実証的に実証する。
提案手法は,既存の予測モデルをかなりのマージンで上回るだけでなく,ダウンストリームデータセット上でゼロショット方式で評価した場合,未認識のデータポイントを十分に一般化することができる。
最後に,提案モデルがベースラインモデルより優れ,従来の手法との違いを解析するために,定性的かつ定量的に検討した。
オリジナルの論文はICDM 2022でフルペーパーとして発表され、https://ieeexplore.ieee.org/document/10027662で公開されている。
関連論文リスト
- GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts [25.503695417712997]
Time-MoEは、より大きく、より有能な基礎モデルを予測するために設計された、スケーラブルで統一されたアーキテクチャである。
Time-MoEは、予測毎にネットワークのサブセットだけを活性化することで、計算効率を向上させる。
時系列基礎モデルを24億のパラメータに拡張し,予測精度を大幅に向上させた。
論文 参考訳(メタデータ) (2024-09-24T12:42:18Z) - AALF: Almost Always Linear Forecasting [3.336367986372977]
単純なモデルではほとんどの場合十分な時間で十分であり,特定の予測に対してのみDeep Learning法を選択することで,予測性能を向上させることができる,と我々は主張する。
実世界の様々なデータセットに関する実証的研究により、我々の選択手法は、ほとんどの場合、最先端のオンラインモデル選択方法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-16T10:13:09Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
本稿では,短期負荷予測のためのモデルに依存しないメタ学習アルゴリズムを提案する。
提案手法は,任意の長さの未知の負荷時間列に迅速に適応し,一般化することができる。
提案手法は,実世界の消費者の歴史的負荷消費データのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-09T18:59:08Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series [11.004159006784977]
本稿では,階層間の予測の整合性を維持するために,量子レグレッション損失を最適化するフレキシブル非線形モデルを提案する。
ここで導入された理論的枠組みは、下層の微分可微分損失関数を持つ任意の予測モデルに適用できる。
論文 参考訳(メタデータ) (2021-02-25T00:59:01Z) - A Worrying Analysis of Probabilistic Time-series Models for Sales
Forecasting [10.690379201437015]
確率的時系列モデルは、不確実性の下で最適な決定を下すのに役立つため、予測分野で人気がある。
販売予測のための3つの顕著な確率的時系列モデルの性能解析を行った。
論文 参考訳(メタデータ) (2020-11-21T03:31:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。