PALMS: Parallel Adaptive Lasso with Multi-directional Signals for Latent Networks Reconstruction
- URL: http://arxiv.org/abs/2411.11464v1
- Date: Mon, 18 Nov 2024 10:58:16 GMT
- Title: PALMS: Parallel Adaptive Lasso with Multi-directional Signals for Latent Networks Reconstruction
- Authors: Zhaoyu Xing, Wei Zhong,
- Abstract summary: We propose a general distributed and parallel computing framework for network reconstruction methods via compressive sensing technical.
We prove that the approximate estimation utilizing the distributed algorithm can keep the theoretical results.
- Score: 6.949853145487146
- License:
- Abstract: Large-scale networks exist in many field and play an important role in real-world dynamics. However, the networks are usually latent and expensive to detect, which becomes the main challenging for many applications and empirical analysis. Several statistical methods were proposed to infer the edges, but the complexity of algorithms make them hard to be applied for large-scale networks. In this paper, we proposed a general distributed and parallel computing framework for network reconstruction methods via compressive sensing technical, to make them feasible for inferring the super large networks in practice. Combining with the CALMS, we proposed for those estimators enjoy additional theoretical properties, such as the consistency and asymptotic normality, we prove that the approximate estimation utilizing the distributed algorithm can keep the theoretical results.
Related papers
- Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
Multi-network alignment is an essential prerequisite for joint learning on multiple networks.
We propose a hierarchical multi-marginal optimal transport framework named HOT for multi-network alignment.
Our proposed HOT achieves significant improvements over the state-of-the-art in both effectiveness and scalability.
arXiv Detail & Related papers (2023-10-06T02:35:35Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - A pseudo-likelihood approach to community detection in weighted networks [4.111899441919165]
We propose a pseudo-likelihood community estimation algorithm for networks with normally distributed edge weights.
We prove that the estimates obtained by the proposed method are consistent under the assumption of homogeneous networks.
We illustrate the method on simulated networks and on a fMRI dataset, where edge weights represent connectivity between brain regions.
arXiv Detail & Related papers (2023-03-10T13:36:10Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
We identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks.
We show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
arXiv Detail & Related papers (2022-07-18T15:07:13Z) - i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery [11.119895959906085]
We propose a novel, structured pruning algorithm for neural networks -- the iterative, Sparse Structured Pruning, dubbed as i-SpaSP.
i-SpaSP operates by identifying a larger set of important parameter groups within a network that contribute most to the residual between pruned and dense network output.
It is shown to discover high-performing sub-networks and improve upon the pruning efficiency of provable baseline methodologies by several orders of magnitude.
arXiv Detail & Related papers (2021-12-07T05:26:45Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
We show that a class of functions can be approximated by a complex-reaction network using the number of parameters.
For empirical risk minimization, our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks.
arXiv Detail & Related papers (2021-08-15T10:13:49Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
Massive access is a critical design challenge of Internet of Things (IoT) networks.
We consider the grant-free uplink transmission of an IoT network with a multiple-antenna base station (BS) and a large number of single-antenna IoT devices.
We propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness.
arXiv Detail & Related papers (2021-06-19T05:23:05Z) - The Principles of Deep Learning Theory [19.33681537640272]
This book develops an effective theory approach to understanding deep neural networks of practical relevance.
We explain how these effectively-deep networks learn nontrivial representations from training.
We show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks.
arXiv Detail & Related papers (2021-06-18T15:00:00Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.