論文の概要: Hierarchical-Graph-Structured Edge Partition Models for Learning Evolving Community Structure
- arxiv url: http://arxiv.org/abs/2411.11536v1
- Date: Mon, 18 Nov 2024 12:48:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:25.943990
- Title: Hierarchical-Graph-Structured Edge Partition Models for Learning Evolving Community Structure
- Title(参考訳): コミュニティ構造を進化させる学習のための階層グラフ構造化エッジ分割モデル
- Authors: Xincan Yu, Sikun Yang,
- Abstract要約: 本稿では,時間的ネットワーク内での潜在コミュニティの進化を捉えるために,新しい動的ネットワークモデルを提案する。
我々のモデルは、推測されたコミュニティ構造が相互に結合し、分割し、相互作用し、複雑なネットワークのダイナミクスを包括的に理解することを可能にする。
- 参考スコア(独自算出の注目度): 0.9208007322096532
- License:
- Abstract: We propose a novel dynamic network model to capture evolving latent communities within temporal networks. To achieve this, we decompose each observed dynamic edge between vertices using a Poisson-gamma edge partition model, assigning each vertex to one or more latent communities through \emph{nonnegative} vertex-community memberships. Specifically, hierarchical transition kernels are employed to model the interactions between these latent communities in the observed temporal network. A hierarchical graph prior is placed on the transition structure of the latent communities, allowing us to model how they evolve and interact over time. Consequently, our dynamic network enables the inferred community structure to merge, split, and interact with one another, providing a comprehensive understanding of complex network dynamics. Experiments on various real-world network datasets demonstrate that the proposed model not only effectively uncovers interpretable latent structures but also surpasses other state-of-the art dynamic network models in the tasks of link prediction and community detection.
- Abstract(参考訳): 本稿では,時間的ネットワーク内での潜在コミュニティの進化を捉えるために,新しい動的ネットワークモデルを提案する。
これを達成するために、ポアソンガンマエッジ分割モデルを用いて頂点間の観測された動的エッジを分解し、各頂点を1つ以上の潜在コミュニティに割り当てる(emph{non negative} vertex-community members)。
具体的には、観測された時間ネットワーク内のこれらの潜在コミュニティ間の相互作用をモデル化するために階層的遷移カーネルが使用される。
階層的なグラフは、潜在コミュニティの遷移構造の上に置かれ、時間とともにそれらがどのように進化し相互作用するかをモデル化することができます。
その結果、我々の動的ネットワークは、推測されたコミュニティ構造が相互に結合し、分割し、相互作用することを可能にし、複雑なネットワーク力学の包括的理解を提供する。
様々な実世界のネットワークデータセットの実験により、提案モデルは解釈可能な潜在構造を効果的に発見するだけでなく、リンク予測やコミュニティ検出といったタスクにおいて、他の最先端の動的ネットワークモデルを上回ることが示されている。
関連論文リスト
- Inferring community structure in attributed hypergraphs using stochastic
block models [3.335932527835653]
本研究では,ノード属性データをハイパーグラフのコミュニティ構造学習に組み込む統計フレームワークを開発した。
我々は,HyperNEOと呼ぶモデルにより,人工・経験的ハイパーグラフにおけるコミュニティ構造の学習が促進されることを実証した。
我々は,現実世界の複合システムにおける高次コミュニティ構造の調査と理解の拡大を期待する。
論文 参考訳(メタデータ) (2024-01-01T07:31:32Z) - Bayesian Detection of Mesoscale Structures in Pathway Data on Graphs [0.0]
メソスケール構造は 複雑なシステムの抽象化と解析の 不可欠な部分です
それらは、社会的または引用ネットワークにおけるコミュニティ、企業間相互作用における役割、または輸送ネットワークにおける中核周辺構造におけるコミュニティを表現することができる。
我々は,グループ内のノードの最適分割と高次ネットワークの最適ダイナミクスを同時にモデル化するベイズ的アプローチを導出する。
論文 参考訳(メタデータ) (2023-01-16T12:45:33Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
連続時間動的ネットワーク表現のためのPiecewise-Veable Model (PiVeM)。
超低次元空間において、PiVeMはネットワーク構造と力学をうまく表現できることを示す。
リンク予測などの下流タスクでは、関連する最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2022-12-23T13:57:56Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
グラフ畳み込みネットワーク(GCN)は骨格に基づく行動認識において広く採用されている。
近年提案されている骨格に基づく行動認識法の性能は以下の要因によって制限されていると論じる。
近年の注目機構に着想を得て,アクション関連関係情報を取得するためのマルチグラインド・コンテキスト集中モジュール MCF を提案する。
論文 参考訳(メタデータ) (2022-03-31T02:45:24Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
スケルトンに基づく行動認識には,単純なマルチスケールセマンティクス誘導ニューラルネットワークが提案されている。
MS-SGNは、NTU60、NTU120、SYSUデータセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-11-07T03:50:50Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Visual Concept Reasoning Networks [93.99840807973546]
分割変換マージ戦略は、視覚認識タスクのための畳み込みニューラルネットワークのアーキテクチャ制約として広く使用されている。
我々は、この戦略を利用して、高レベルの視覚概念間の推論を可能にするために、Visual Concept Reasoning Networks (VCRNet) と組み合わせることを提案する。
提案するモデルであるVCRNetは、パラメータ数を1%以下にすることで、一貫して性能を向上する。
論文 参考訳(メタデータ) (2020-08-26T20:02:40Z) - GRADE: Graph Dynamic Embedding [76.85156209917932]
GRADEは、軌道に先立ってランダムウォークを課すことで、進化するノードとコミュニティ表現を生成することを学ぶ確率モデルである。
我々のモデルは、遷移行列を介して時間ステップ間で更新されるノードコミュニティメンバシップも学習する。
実験では、GRADEは動的リンク予測においてベースラインを上回る性能を示し、動的コミュニティ検出において好適な性能を示し、一貫性と解釈可能な進化するコミュニティを特定する。
論文 参考訳(メタデータ) (2020-07-16T01:17:24Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。