論文の概要: Leveraging Computational Pathology AI for Noninvasive Optical Imaging Analysis Without Retraining
- arxiv url: http://arxiv.org/abs/2411.11613v1
- Date: Mon, 18 Nov 2024 14:35:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:49.965945
- Title: Leveraging Computational Pathology AI for Noninvasive Optical Imaging Analysis Without Retraining
- Title(参考訳): 非侵襲的光学画像解析におけるリトレーニングなしの計算病理AIの活用
- Authors: Danny Barash, Emilie Manning, Aidan Van Vleck, Omri Hirsch, Kyi Lei Aye, Jingxi Li, Philip O. Scumpia, Aydogan Ozcan, Sumaira Aasi, Kerri E. Rieger, Kavita Y. Sarin, Oren Freifeld, Yonatan Winetraub,
- Abstract要約: 非侵襲的な光学画像モダリティは、患者の組織を3Dでプローブし、時間とともに、サンプルごとに臨床的に関係のあるデータをギガバイト生成する。
このデータを分析し、臨床ワークフローを支援するために、AIモデルが必要である。
本稿では,リトレーニングなしで計算病理から任意のAIモデルを適用する手法であるFoundationShiftを紹介する。
- 参考スコア(独自算出の注目度): 3.6835809728620634
- License:
- Abstract: Noninvasive optical imaging modalities can probe patient's tissue in 3D and over time generate gigabytes of clinically relevant data per sample. There is a need for AI models to analyze this data and assist clinical workflow. The lack of expert labelers and the large dataset required (>100,000 images) for model training and tuning are the main hurdles in creating foundation models. In this paper we introduce FoundationShift, a method to apply any AI model from computational pathology without retraining. We show our method is more accurate than state of the art models (SAM, MedSAM, SAM-Med2D, CellProfiler, Hover-Net, PLIP, UNI and ChatGPT), with multiple imaging modalities (OCT and RCM). This is achieved without the need for model retraining or fine-tuning. Applying our method to noninvasive in vivo images could enable physicians to readily incorporate optical imaging modalities into their clinical practice, providing real time tissue analysis and improving patient care.
- Abstract(参考訳): 非侵襲的な光学画像モダリティは、患者の組織を3Dでプローブし、時間とともに、サンプルごとに臨床的に関係のあるデータをギガバイト生成する。
このデータを分析し、臨床ワークフローを支援するために、AIモデルが必要である。
モデルトレーニングとチューニングに必要となる、エキスパートラベルの欠如と大規模なデータセット(>100,000イメージ)が、基礎モデルを作成する上で大きなハードルとなっている。
本稿では,リトレーニングなしで計算病理から任意のAIモデルを適用する手法であるFoundationShiftを紹介する。
提案手法は,最新の画像モデル (SAM, MedSAM, SAM-Med2D, CellProfiler, Hover-Net, PLIP, UNI, ChatGPT) よりも精度が高いことを示す。
これはモデルの再トレーニングや微調整を必要とせずに実現できる。
非侵襲的な生体内画像に本手法を適用することで、医師は光学画像モダリティを臨床実践に容易に組み込むことができ、リアルタイムの組織解析と患者ケアの改善が可能になる。
関連論文リスト
- Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
人工知能(AI)の最近の進歩は、医療画像と計算病理に革命をもたらしている。
デジタル全スライド画像(WSI)の解析における一定の課題は、何万ものタイルレベルの画像埋め込みをスライドレベルの表現に集約する問題である。
本研究は,9つの臨床的課題を対象とした10種類のスライドレベルのアグリゲーション手法のベンチマーク分析を行った。
論文 参考訳(メタデータ) (2024-07-10T17:00:57Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - SYNTA: A novel approach for deep learning-based image analysis in muscle
histopathology using photo-realistic synthetic data [2.1616289178832666]
我々は,合成,フォトリアリスティック,高度に複雑なバイオメディカルイメージをトレーニングデータとして生成するための新しいアプローチとして,Synta(synthetic data)を紹介した。
手動のアノテーションを必要とせずに、以前に見つからなかった実世界のデータに対して、堅牢で専門家レベルのセグメンテーションタスクを実行することが可能であることを実証した。
論文 参考訳(メタデータ) (2022-07-29T12:50:32Z) - SyntheX: Scaling Up Learning-based X-ray Image Analysis Through In
Silico Experiments [12.019996672009375]
人間のモデルからリアルなシミュレートされた画像を作成することは、大規模なIn situデータ収集の代替となることを示す。
人体モデルからの学習データの合成は、容易にスケールできるので、我々がSyntheXと呼ぶX線画像解析のためのモデル転送パラダイムが、実際のデータ学習モデルよりも優れていることが分かりました。
論文 参考訳(メタデータ) (2022-06-13T13:08:41Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Self-Supervised Representation Learning using Visual Field Expansion on
Digital Pathology [7.568373895297608]
このような画像を分析する上で重要な課題は、そのサイズであり、そのサイズはギガピクセルに収まる。
本稿では,このようなタイルの強力な表現を学習し,視界を確実に拡張する新しい生成フレームワークを提案する。
我々のモデルは、異なる臨床エンドポイントに使用できる強力な表現を同時に学習しながら、細部で異なる組織タイプを生成することを学習する。
論文 参考訳(メタデータ) (2021-09-07T19:20:01Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Democratizing Artificial Intelligence in Healthcare: A Study of Model
Development Across Two Institutions Incorporating Transfer Learning [8.043077408518826]
トランスファーラーニング(TL)は、非常に小さなローカルデータセットを使用して、ある機関から完全に訓練されたモデルを他の機関によって微調整することを可能にする。
本稿では,基本的なユースケースを対象としたAIモデル開発におけるTLの課題,方法論,メリットについて述べる。
論文 参考訳(メタデータ) (2020-09-25T21:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。