論文の概要: Democratizing Artificial Intelligence in Healthcare: A Study of Model
Development Across Two Institutions Incorporating Transfer Learning
- arxiv url: http://arxiv.org/abs/2009.12437v1
- Date: Fri, 25 Sep 2020 21:12:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 23:14:33.953356
- Title: Democratizing Artificial Intelligence in Healthcare: A Study of Model
Development Across Two Institutions Incorporating Transfer Learning
- Title(参考訳): 医療における人工知能の民主化 : トランスファーラーニングを取り入れた2施設間のモデル開発に関する研究
- Authors: Vikash Gupta1 and Holger Roth and Varun Buch3 and Marcio A.B.C.
Rockenbach and Richard D White and Dong Yang and Olga Laur and Brian
Ghoshhajra and Ittai Dayan and Daguang Xu and Mona G. Flores and Barbaros
Selnur Erdal
- Abstract要約: トランスファーラーニング(TL)は、非常に小さなローカルデータセットを使用して、ある機関から完全に訓練されたモデルを他の機関によって微調整することを可能にする。
本稿では,基本的なユースケースを対象としたAIモデル開発におけるTLの課題,方法論,メリットについて述べる。
- 参考スコア(独自算出の注目度): 8.043077408518826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The training of deep learning models typically requires extensive data, which
are not readily available as large well-curated medical-image datasets for
development of artificial intelligence (AI) models applied in Radiology.
Recognizing the potential for transfer learning (TL) to allow a fully trained
model from one institution to be fine-tuned by another institution using a much
small local dataset, this report describes the challenges, methodology, and
benefits of TL within the context of developing an AI model for a basic
use-case, segmentation of Left Ventricular Myocardium (LVM) on images from
4-dimensional coronary computed tomography angiography. Ultimately, our results
from comparisons of LVM segmentation predicted by a model locally trained using
random initialization, versus one training-enhanced by TL, showed that a
use-case model initiated by TL can be developed with sparse labels with
acceptable performance. This process reduces the time required to build a new
model in the clinical environment at a different institution.
- Abstract(参考訳): ディープラーニングモデルのトレーニングは通常、広範囲なデータを必要とするが、Radiologyに応用された人工知能(AI)モデルを開発するための、大規模で正確な医療画像データセットとして簡単には利用できない。
トランスファー・ラーニング(tl)の可能性を認識して、ある機関から完全に訓練されたモデルが、はるかに小さなローカル・データセットを使用して、他の機関によって微調整されるようにする。本報告では、基礎的ユースケースのためのaiモデルの開発におけるtlの課題、方法論、および、tlの利点について述べる。
その結果,LVMセグメンテーションをランダム初期化を用いて局所的に訓練したモデルと,TLで強化した1つのトレーニングモデルとの比較により,TLで開始したユースケースモデルを,スパースラベルを用いて許容性能で開発できることが判明した。
このプロセスは、異なる施設における臨床環境における新しいモデル構築に必要な時間を短縮する。
関連論文リスト
- Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models [0.0]
本研究では,半構造化データとLarge Language Models(LLMs)を統合することにより,医学教育の変革的枠組みを導入する。
提案手法はAIを用いて、特定の教育目的に合わせて、詳細な、臨床的に関係のあるシナリオを効率的に生成する。
論文 参考訳(メタデータ) (2024-04-30T17:06:11Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Self-supervised Multi-modal Training from Uncurated Image and Reports
Enables Zero-shot Oversight Artificial Intelligence in Radiology [31.045221580446963]
医療用クロスアテンションビジョンランゲージモデル(医療用X-VL)を提案する。
我々のモデルは、ゼロショット分類からゼロショット誤り訂正まで、さまざまなゼロショットタスクを監視できる。
提案手法は,データ制限設定において特に有効であり,医療領域に広く適用可能である可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-10T04:35:58Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Interpretable and synergistic deep learning for visual explanation and
statistical estimations of segmentation of disease features from medical
images [0.0]
医学画像からの病因分類やセグメンテーションのための深層学習(DL)モデルは、無関係な自然界画像からの伝達学習(TL)を用いて、ますます訓練されている。
TL後バイナリセグメンテーションに広く用いられているDLアーキテクチャの比較,厳密な統計的解析,および比較について報告する。
TIIおよびLMIモデル、コード、10,000以上の医療画像の無料GitHubリポジトリと、この研究からのGrad-CAM出力は、高度な計算医学の出発点として利用できる。
論文 参考訳(メタデータ) (2020-11-11T14:08:17Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。