Signaling and Social Learning in Swarms of Robots
- URL: http://arxiv.org/abs/2411.11616v2
- Date: Tue, 19 Nov 2024 10:11:04 GMT
- Title: Signaling and Social Learning in Swarms of Robots
- Authors: Leo Cazenille, Maxime Toquebiau, Nicolas Lobato-Dauzier, Alessia Loi, Loona Macabre, Nathanael Aubert-Kato, Anthony Genot, Nicolas Bredeche,
- Abstract summary: This paper investigates the role of communication in improving coordination within robot swarms.
We highlight the role communication can play in addressing the credit assignment problem.
- Score: 0.0
- License:
- Abstract: This paper investigates the role of communication in improving coordination within robot swarms, focusing on a paradigm where learning and execution occur simultaneously in a decentralized manner. We highlight the role communication can play in addressing the credit assignment problem (individual contribution to the overall performance), and how it can be influenced by it. We propose a taxonomy of existing and future works on communication, focusing on information selection and physical abstraction as principal axes for classification: from low-level lossless compression with raw signal extraction and processing to high-level lossy compression with structured communication models. The paper reviews current research from evolutionary robotics, multi-agent (deep) reinforcement learning, language models, and biophysics models to outline the challenges and opportunities of communication in a collective of robots that continuously learn from one another through local message exchanges, illustrating a form of social learning.
Related papers
- Generative AI Meets Semantic Communication: Evolution and Revolution of
Communication Tasks [41.64537121421164]
We present a unified perspective of deep generative models in semantic communication.
We unveil their revolutionary role in future communication frameworks, enabling emerging applications and tasks.
arXiv Detail & Related papers (2024-01-10T09:56:36Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
Social learning uses cues from experts to align heterogeneous policies, reduce sample complexity, and solve partially observable tasks.
This paper proposes an unsupervised method based on the information bottleneck to capture both referential complexity and task-specific utility.
arXiv Detail & Related papers (2023-02-28T03:23:27Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Curriculum-Driven Multi-Agent Learning and the Role of Implicit
Communication in Teamwork [24.92668968807012]
We propose a curriculum-driven learning strategy for solving difficult multi-agent coordination tasks.
We argue that emergent implicit communication plays a large role in enabling superior levels of coordination.
arXiv Detail & Related papers (2021-06-21T14:54:07Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Reinforcement Learning Approaches in Social Robotics [3.9523548427618067]
This article surveys reinforcement learning approaches in social robotics.
Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots.
arXiv Detail & Related papers (2020-09-21T08:56:18Z) - Who2com: Collaborative Perception via Learnable Handshake Communication [34.29310680302486]
We propose the problem of collaborative perception, where robots can combine their local observations with those of neighboring agents in a learnable way to improve accuracy on a perception task.
Inspired by networking communication protocols, we propose a multi-stage handshake communication mechanism where the neural network can learn to compress relevant information needed for each stage.
We show that for the semantic segmentation task, our handshake communication method significantly improves accuracy by approximately 20% over decentralized baselines, and is comparable to centralized ones using a quarter of the bandwidth.
arXiv Detail & Related papers (2020-03-21T04:16:22Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.