論文の概要: Efficient and Robust Continual Graph Learning for Graph Classification in Biology
- arxiv url: http://arxiv.org/abs/2411.11668v1
- Date: Mon, 18 Nov 2024 15:47:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:25.013626
- Title: Efficient and Robust Continual Graph Learning for Graph Classification in Biology
- Title(参考訳): 生物学におけるグラフ分類のための効率的かつロバストな連続グラフ学習
- Authors: Ding Zhang, Jane Downer, Can Chen, Ren Wang,
- Abstract要約: 本稿では,グラフデータ分類のための頑健で効率的な連続グラフ学習フレームワークであるPerturbed and Sparsified Continual Graph Learning (PSCGL)を提案する。
PSCGLはタスク間の知識を保持するだけでなく、生物学におけるグラフ分類モデルの効率性と堅牢性を高める。
- 参考スコア(独自算出の注目度): 4.1259781599165635
- License:
- Abstract: Graph classification is essential for understanding complex biological systems, where molecular structures and interactions are naturally represented as graphs. Traditional graph neural networks (GNNs) perform well on static tasks but struggle in dynamic settings due to catastrophic forgetting. We present Perturbed and Sparsified Continual Graph Learning (PSCGL), a robust and efficient continual graph learning framework for graph data classification, specifically targeting biological datasets. We introduce a perturbed sampling strategy to identify critical data points that contribute to model learning and a motif-based graph sparsification technique to reduce storage needs while maintaining performance. Additionally, our PSCGL framework inherently defends against graph backdoor attacks, which is crucial for applications in sensitive biological contexts. Extensive experiments on biological datasets demonstrate that PSCGL not only retains knowledge across tasks but also enhances the efficiency and robustness of graph classification models in biology.
- Abstract(参考訳): グラフ分類は、分子構造と相互作用がグラフとして自然に表される複雑な生物学的システムを理解するのに不可欠である。
従来のグラフニューラルネットワーク(GNN)は、静的なタスクではうまく機能するが、破滅的な忘れのために動的設定に苦労する。
本稿では,グラフデータ分類のための堅牢で効率的な連続グラフ学習フレームワークであるPerturbed and Sparsified Continual Graph Learning (PSCGL)について述べる。
本稿では,モデル学習に寄与する重要なデータポイントを特定するための摂動サンプリング戦略と,性能を維持しながらストレージ需要を減らすためのモチーフベースのグラフスパーシフィケーション手法を提案する。
さらに、我々のPSCGLフレームワークは本質的にグラフバックドア攻撃を防御しています。
生物データセットに関する大規模な実験により、PSCGLはタスク間の知識を保持するだけでなく、生物学におけるグラフ分類モデルの効率性と堅牢性を高めることが示されている。
関連論文リスト
- Dynamic and Textual Graph Generation Via Large-Scale LLM-based Agent Simulation [70.60461609393779]
GraphAgent-Generator (GAG) は動的グラフ生成のための新しいシミュレーションベースのフレームワークである。
本フレームワークは,確立されたネットワーク科学理論において,7つのマクロレベルの構造特性を効果的に再現する。
最大10万近いノードと1000万のエッジを持つグラフの生成をサポートし、最低速度は90.4%である。
論文 参考訳(メタデータ) (2024-10-13T12:57:08Z) - TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
トポロジカル進化速度 (TopER) は、トポロジカルデータ解析に基づく低次元埋め込み手法である。
TopERはグラフ部分構造の進化率を計算することによって、重要な位相的アプローチである永続化ホモロジーを単純化する。
我々のモデルは、分類、クラスタリング、可視化といったタスクにおいて、分子、生物学的、ソーシャルネットワークのデータセットにまたがる最先端の結果を達成したり、超えたりします。
論文 参考訳(メタデータ) (2024-10-02T17:31:33Z) - Active Learning for Graphs with Noisy Structures [29.760935499506804]
グラフニューラルネットワーク(GNN)は、十分なラベル付きノードの可用性に大きく依存するノード分類などのタスクで大きな成功を収めている。
しかし、大規模グラフのラベル付けの過度なコストは、下流モデルの性能を最大化するための効率的なデータ選択を目的としたグラフのアクティブラーニングに焦点を合わせた。
本稿では,データ選択とグラフ浄化を同時に行うための反復的アプローチと,前回の反復から学習した最良の情報とを併用した,アクティブな学習フレームワークであるGALCleanを提案する。
論文 参考訳(メタデータ) (2024-02-04T02:23:45Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
本稿では、教師なしの方法でグラフ全体の表現を学習することに焦点を当てる。
本稿では、データ構造を用いて、ペアが正か負かの確率を決定する構造知識精製(Structure Knowledge Refinement, SKR)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T09:05:33Z) - Self-supervised Learning and Graph Classification under Heterophily [4.358149865548289]
我々は,Metric(PGM)に基づく,事前学習型グラフニューラルネットワーク(GNN)のための新しい自己教師型戦略を提案する。
我々の戦略は、分子特性予測とタンパク質機能予測のための最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-14T12:32:38Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Graph Structure Learning with Variational Information Bottleneck [70.62851953251253]
本稿では,新しい変分情報ボトルネックガイド付きグラフ構造学習フレームワーク,すなわちVIB-GSLを提案する。
VIB-GSLは情報的かつ圧縮的なグラフ構造を学習し、特定の下流タスクに対して実行可能な情報を蒸留する。
論文 参考訳(メタデータ) (2021-12-16T14:22:13Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
グラフニューラルネットワーク(GNN)はノードレベルのグラフ表現学習タスクでグラフ構造化データを扱うのに十分成熟していることが証明されている。
本稿では,グラフ構造に適応する階層型グラフレベルの表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-13T06:22:24Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。