Freezing of Gait Detection Using Gramian Angular Fields and Federated Learning from Wearable Sensors
- URL: http://arxiv.org/abs/2411.11764v3
- Date: Fri, 02 May 2025 19:09:44 GMT
- Title: Freezing of Gait Detection Using Gramian Angular Fields and Federated Learning from Wearable Sensors
- Authors: Shovito Barua Soumma, S M Raihanul Alam, Rudmila Rahman, Umme Niraj Mahi, Abdullah Mamun, Sayyed Mostafa Mostafavi, Hassan Ghasemzadeh,
- Abstract summary: Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease.<n>We present FOGSense, a real-world deployable FOG detection system using only a single sensor.
- Score: 6.369424231505372
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease that impairs mobility and safety by increasing the risk of falls. An effective FOG detection system must be accurate, real-time, and deployable in free-living environments to enable timely interventions. However, existing detection methods face challenges due to (1) intra- and inter-patient variability, (2) subject-specific training, (3) using multiple sensors in FOG dominant locations (e.g., ankles) leading to high failure points, (4) centralized, non-adaptive learning frameworks that sacrifice patient privacy and prevent collaborative model refinement across populations and disease progression, and (5) most systems are tested in controlled settings, limiting their real-world applicability for continuous in-home monitoring. Addressing these gaps, we present FOGSense, a real-world deployable FOG detection system designed for uncontrolled, free-living conditions using only a single sensor. FOGSense uses Gramian Angular Field (GAF) transformations and privacy-preserving federated deep learning to capture temporal and spatial gait patterns missed by traditional methods with a low false positive rate. We evaluated our system using a public Parkinson's dataset collected in a free-living environment. FOGSense improves accuracy by 10.4% over a single-axis accelerometer, reduces failure points compared to multi-sensor systems, and demonstrates robustness to missing values. The federated architecture allows personalized model adaptation and efficient smartphone synchronization during off-peak hours, making it effective for long-term monitoring as symptoms evolve. Overall, FOGSense achieved a 22.2% improvement in F1-score and a 74.53% reduction in false positive rate compared to state-of-the-art methods, along with enhanced sensitivity for FOG episode detection.
Related papers
- Hierarchical Reinforcement Learning Framework for Adaptive Walking Control Using General Value Functions of Lower-Limb Sensor Signals [0.40498500266986387]
We explore the use of Hierarchical Reinforcement Learning to develop adaptive control strategies for lower-limb exoskeletons.<n>Our approach breaks down the complex task of exoskeleton control adaptation into a higher-level framework for terrain strategy adaptation and a lower-level framework for providing predictive information.<n>We investigated two methods for incorporating actual and predicted sensor signals into a policy network with the intent to improve the decision-making capacity of the control system.
arXiv Detail & Related papers (2025-07-22T19:47:04Z) - Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.
We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.
Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - Automated Detection of Epileptic Spikes and Seizures Incorporating a Novel Spatial Clustering Prior [4.432163893362497]
We introduce a paradigm that first clusters MEG channels based on their sensor's spatial position.<n>Next, a novel convolutional input module is designed to integrate the spatial clustering and temporal changes of the signals.<n>Our method achieves an F1 score of 94.73% on a large real-world MEG dataset Sanbo-CMR collected from two centers, outperforming state-of-the-art approaches by 1.85%.
arXiv Detail & Related papers (2025-01-05T02:06:13Z) - Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Sensor Fusion [6.963971634605796]
Low-cost, distributed sensor networks in environmental and biomedical domains have enabled continuous, large-scale health monitoring.<n>These systems often face challenges related to degraded data quality caused by sensor drift, noise, and insufficient calibration.<n>Traditional machine learning methods for sensor fusion and calibration rely on extensive feature engineering.<n>We propose a novel unsupervised domain adaptation (UDA) method tailored for regression tasks.
arXiv Detail & Related papers (2024-11-11T12:20:57Z) - Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - On the effectiveness of smartphone IMU sensors and Deep Learning in the detection of cardiorespiratory conditions [0.21987601456703473]
This research introduces an innovative method for the early screening of cardiorespiratory diseases based on an acquisition protocol.
We collected, in a clinical setting, a dataset featuring recordings of breathing kinematics obtained by accelerometer and gyroscope readings from five distinct body regions.
We propose an end-to-end deep learning pipeline for early cardiorespiratory disease screening, incorporating a preprocessing step segmenting the data into individual breathing cycles.
arXiv Detail & Related papers (2024-08-27T18:29:47Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion Detection [11.14938737864796]
We propose CAPTAIN, a rule-based PIDS capable of automatically adapting to diverse environments.
We build a differentiable tag propagation framework and utilize the gradient descent algorithm to optimize these adaptive parameters.
The evaluation results demonstrate that CAPTAIN offers better detection accuracy, less detection latency, lower runtime overhead, and more interpretable detection alarms and knowledge.
arXiv Detail & Related papers (2024-04-23T03:50:57Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - Improvement of Performance in Freezing of Gait detection in Parkinsons Disease using Transformer networks and a single waist worn triaxial accelerometer [1.5809770996457706]
Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinsons disease.
This paper presents advances in automatic FOG detection using a single body-worn triaxial accelerometer and a novel classification algorithm based on Transformers and convolutional networks.
arXiv Detail & Related papers (2024-04-04T09:02:17Z) - 1D-Convolutional transformer for Parkinson disease diagnosis from gait [7.213855322671065]
This paper presents an efficient deep neural network model for diagnosing Parkinson's disease from gait.
We introduce a hybrid ConvNetTransform-er architecture to accurately diagnose the disease by detecting the severity stage.
Our experimental results show that our approach is effective for detecting the different stages of Parkinson's disease from gait data.
arXiv Detail & Related papers (2023-11-06T15:17:17Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Freezing of Gait Prediction From Accelerometer Data Using a Simple
1D-Convolutional Neural Network -- 8th Place Solution for Kaggle's
Parkinson's Freezing of Gait Prediction Competition [0.0]
Freezing of Gait (FOG) is a common motor symptom in patients with Parkinson's disease (PD)
In this work I present a simple 1-D convolutional neural network that was trained to detect FOG events in accelerometer data.
Model ranked 8th out of 1379 teams in the Parkinson's Freezing of Gait Prediction competition.
arXiv Detail & Related papers (2023-07-07T09:28:04Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.