Theoretical Foundations of Conformal Prediction
- URL: http://arxiv.org/abs/2411.11824v1
- Date: Mon, 18 Nov 2024 18:44:00 GMT
- Title: Theoretical Foundations of Conformal Prediction
- Authors: Anastasios N. Angelopoulos, Rina Foygel Barber, Stephen Bates,
- Abstract summary: Conformal prediction and related inferential techniques are useful in a diverse array of tasks.
Conformal prediction's main appeal is its ability to provide formal, finite-sample guarantees.
The goal of this book is to teach the reader about the fundamental technical arguments that arise when researching conformal prediction.
- Score: 15.884682750072399
- License:
- Abstract: This book is about conformal prediction and related inferential techniques that build on permutation tests and exchangeability. These techniques are useful in a diverse array of tasks, including hypothesis testing and providing uncertainty quantification guarantees for machine learning systems. Much of the current interest in conformal prediction is due to its ability to integrate into complex machine learning workflows, solving the problem of forming prediction sets without any assumptions on the form of the data generating distribution. Since contemporary machine learning algorithms have generally proven difficult to analyze directly, conformal prediction's main appeal is its ability to provide formal, finite-sample guarantees when paired with such methods. The goal of this book is to teach the reader about the fundamental technical arguments that arise when researching conformal prediction and related questions in distribution-free inference. Many of these proof strategies, especially the more recent ones, are scattered among research papers, making it difficult for researchers to understand where to look, which results are important, and how exactly the proofs work. We hope to bridge this gap by curating what we believe to be some of the most important results in the literature and presenting their proofs in a unified language, with illustrations, and with an eye towards pedagogy.
Related papers
- Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - A comparative study of conformal prediction methods for valid uncertainty quantification in machine learning [0.0]
dissertation tries to further the quest for a world where everyone is aware of uncertainty, of how important it is and how to embrace it instead of fearing it.
A specific, though general, framework that allows anyone to obtain accurate uncertainty estimates is singled out and analysed.
arXiv Detail & Related papers (2024-05-03T13:19:33Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Design-based conformal prediction [0.0]
Conformal prediction is an assumption-lean approach to generating distribution-free prediction intervals or sets.
We show how conformal prediction can be applied to data from several common complex sample survey designs.
arXiv Detail & Related papers (2023-03-02T17:15:31Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Parsimonious Inference [0.0]
Parsimonious inference is an information-theoretic formulation of inference over arbitrary architectures.
Our approaches combine efficient encodings with prudent sampling strategies to construct predictive ensembles without cross-validation.
arXiv Detail & Related papers (2021-03-03T04:13:14Z) - Universal time-series forecasting with mixture predictors [10.812772606528172]
This book is devoted to the problem of sequential probability forecasting, that is, predicting the probabilities of the next outcome of a growing sequence of observations given the past.
Main subject is the mixture predictors, which are formed as a combination of a finite or infinite set of other predictors.
Results demonstrate the universality of this method in a very general probabilistic setting, but also show some of its limitations.
arXiv Detail & Related papers (2020-10-01T10:56:23Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.