RoboGSim: A Real2Sim2Real Robotic Gaussian Splatting Simulator
- URL: http://arxiv.org/abs/2411.11839v1
- Date: Mon, 18 Nov 2024 18:58:03 GMT
- Title: RoboGSim: A Real2Sim2Real Robotic Gaussian Splatting Simulator
- Authors: Xinhai Li, Jialin Li, Ziheng Zhang, Rui Zhang, Fan Jia, Tiancai Wang, Haoqiang Fan, Kuo-Kun Tseng, Ruiping Wang,
- Abstract summary: RoboGSim is a real2sim2real robotic simulator, powered by 3D Gaussian Splatting and the physics engine.
It can synthesize the simulated data with novel views, objects, trajectories, and scenes.
The real2sim and sim2real transfer experiments show a high consistency in the texture and physics.
- Score: 27.04267700576422
- License:
- Abstract: Efficient acquisition of real-world embodied data has been increasingly critical. However, large-scale demonstrations captured by remote operation tend to take extremely high costs and fail to scale up the data size in an efficient manner. Sampling the episodes under a simulated environment is a promising way for large-scale collection while existing simulators fail to high-fidelity modeling on texture and physics. To address these limitations, we introduce the RoboGSim, a real2sim2real robotic simulator, powered by 3D Gaussian Splatting and the physics engine. RoboGSim mainly includes four parts: Gaussian Reconstructor, Digital Twins Builder, Scene Composer, and Interactive Engine. It can synthesize the simulated data with novel views, objects, trajectories, and scenes. RoboGSim also provides an online, reproducible, and safe evaluation for different manipulation policies. The real2sim and sim2real transfer experiments show a high consistency in the texture and physics. Moreover, the effectiveness of synthetic data is validated under the real-world manipulated tasks. We hope RoboGSim serves as a closed-loop simulator for fair comparison on policy learning. More information can be found on our project page \href{https://robogsim.github.io/}{https://robogsim.github.io/}.
Related papers
- GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
arXiv Detail & Related papers (2024-07-15T17:40:46Z) - RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots [25.650235551519952]
We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments.
We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances.
Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning.
arXiv Detail & Related papers (2024-06-04T17:41:31Z) - Benchmarking the Sim-to-Real Gap in Cloth Manipulation [10.530012817995656]
We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation.
We use the dataset to evaluate the reality gap, computational time, and stability of four popular deformable object simulators.
arXiv Detail & Related papers (2023-10-14T09:36:01Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - OmniLRS: A Photorealistic Simulator for Lunar Robotics [2.6718643310547607]
We explain how we built a Lunar simulator based on Isaac Sim, Nvidia's robotic simulator.
This simulation provides fast procedural environment generation, multi-robot capabilities, along with synthetic data pipeline for machine-learning applications.
arXiv Detail & Related papers (2023-09-16T13:48:47Z) - Learning from synthetic data generated with GRADE [0.6982738885923204]
We present a framework for generating realistic animated dynamic environments (GRADE) for robotics research.
GRADE supports full simulation control, ROS integration, realistic physics, while being in an engine that produces high visual fidelity images and ground truth data.
We show that, even training using only synthetic data, can generalize well to real-world images in the same application domain.
arXiv Detail & Related papers (2023-05-07T14:13:04Z) - Real2Sim2Real Transfer for Control of Cable-driven Robots via a
Differentiable Physics Engine [9.268539775233346]
Tensegrity robots exhibit high strength-to-weight ratios and significant deformations.
They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture.
This paper describes a Real2Sim2Real (R2S2R) strategy for modeling tensegrity robots.
arXiv Detail & Related papers (2022-09-13T18:51:26Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
We introduce a novel high-quality neural simulator referred to as DriveGAN.
DriveGAN achieves controllability by disentangling different components without supervision.
We train DriveGAN on multiple datasets, including 160 hours of real-world driving data.
arXiv Detail & Related papers (2021-04-30T15:30:05Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
We present GeoSim, a geometry-aware image composition process that synthesizes novel urban driving scenes.
We first build a diverse bank of 3D objects with both realistic geometry and appearance from sensor data.
The resulting synthetic images are photorealistic, traffic-aware, and geometrically consistent, allowing image simulation to scale to complex use cases.
arXiv Detail & Related papers (2021-01-16T23:00:33Z) - LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World [84.57894492587053]
We develop a novel simulator that captures both the power of physics-based and learning-based simulation.
We first utilize ray casting over the 3D scene and then use a deep neural network to produce deviations from the physics-based simulation.
We showcase LiDARsim's usefulness for perception algorithms-testing on long-tail events and end-to-end closed-loop evaluation on safety-critical scenarios.
arXiv Detail & Related papers (2020-06-16T17:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.