Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations
- URL: http://arxiv.org/abs/2503.20126v1
- Date: Wed, 26 Mar 2025 00:27:29 GMT
- Title: Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations
- Authors: Pooja Rani, Jan-Andrea Bard, June Sallou, Alexander Boll, Timo Kehrer, Alberto Bacchelli,
- Abstract summary: Large language models (LLMs) claim to assist developers in optimizing code for performance and energy efficiency.<n>This work focuses on software written in Matlab-widely used in both academia and industry for scientific and engineering applications.<n>We analyze energy-focused optimization on 400 scripts across 100 top GitHub repositories.
- Score: 45.243401722182554
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid technological evolution has accelerated software development for various domains and use cases, contributing to a growing share of global carbon emissions. While recent large language models (LLMs) claim to assist developers in optimizing code for performance and energy efficiency, their efficacy in real-world scenarios remains under exploration. In this work, we explore the effectiveness of LLMs in reducing the environmental footprint of real-world projects, focusing on software written in Matlab-widely used in both academia and industry for scientific and engineering applications. We analyze energy-focused optimization on 400 scripts across 100 top GitHub repositories. We examine potential 2,176 optimizations recommended by leading LLMs, such as GPT-3, GPT-4, Llama, and Mixtral, and a senior Matlab developer, on energy consumption, memory usage, execution time consumption, and code correctness. The developer serves as a real-world baseline for comparing typical human and LLM-generated optimizations. Mapping these optimizations to 13 high-level themes, we found that LLMs propose a broad spectrum of improvements--beyond energy efficiency--including improving code readability and maintainability, memory management, error handling while the developer overlooked some parallel processing, error handling etc. However, our statistical tests reveal that the energy-focused optimizations unexpectedly negatively impacted memory usage, with no clear benefits regarding execution time or energy consumption. Our qualitative analysis of energy-time trade-offs revealed that some themes, such as vectorization preallocation, were among the common themes shaping these trade-offs. With LLMs becoming ubiquitous in modern software development, our study serves as a call to action: prioritizing the evaluation of common coding practices to identify the green ones.
Related papers
- Energy Considerations of Large Language Model Inference and Efficiency Optimizations [28.55549828393871]
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise.
We systematically analyze the energy implications of common inference efficiency optimizations across diverse NLP and AI workloads.
Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines.
arXiv Detail & Related papers (2025-04-24T15:45:05Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.<n>This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.<n>We analyze experimental results obtained from testing DeepSeek-R1 on our benchmark and reveal the critical ethical concerns raised by this highly acclaimed model.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - GREEN-CODE: Learning to Optimize Energy Efficiency in LLM-based Code Generation [1.5749416770494706]
This work proposes a framework for energy-aware code generation in Large Language Models (LLMs)<n>We train a Reinforcement Learning (RL) agent that learns to balance the trade-offs between accuracy, latency, and energy consumption.<n>Results show that our method reduces the energy consumption between 23-50 % on average for code generation tasks without significantly affecting accuracy.
arXiv Detail & Related papers (2025-01-19T10:44:03Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
Large Language Models (LLMs) are widely adopted for assisting in software development tasks.<n>We propose PerfCodeGen, a training-free framework that enhances the performance of LLM-generated code.
arXiv Detail & Related papers (2024-11-18T06:22:38Z) - Green My LLM: Studying the key factors affecting the energy consumption of code assistants [1.747820331822631]
This paper investigates the energy consumption of large language models-based code assistants such as GitHub Copilot.
Our findings reveal that the energy consumption and performance of code assistants are influenced by various factors, such as the number of concurrent developers.
arXiv Detail & Related papers (2024-11-07T16:00:29Z) - Large Language Models for Energy-Efficient Code: Emerging Results and Future Directions [2.848398051763324]
We propose a novel application of large language models (LLMs) as codes for energy efficiency.
We describe and evaluate a prototype, finding that over 6 small programs our system can improve energy efficiency in 3 of them, up to 2x better than compiler optimizations alone.
arXiv Detail & Related papers (2024-10-11T20:35:40Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.
In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - A Controlled Experiment on the Energy Efficiency of the Source Code Generated by Code Llama [4.937787069991124]
83% of software developers use Large Language Models (LLMs) to generate code.
This paper assesses the energy efficiency of Code Llama with respect to human-written source code.
arXiv Detail & Related papers (2024-05-06T16:32:29Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
Large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications.
For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work.
We perform a detailed coarse-to-fine analysis of the inference performance of various code libraries.
arXiv Detail & Related papers (2024-04-17T15:57:50Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGen is a code generation framework that emulates software process models based on multiple Large Language Model (LLM) agents.
We evaluate FlowGenScrum on four benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET.
arXiv Detail & Related papers (2024-03-23T14:04:48Z) - Learning Performance-Improving Code Edits [107.21538852090208]
We introduce a framework for adapting large language models (LLMs) to high-level program optimization.
First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs.
For prompting, we propose retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play.
arXiv Detail & Related papers (2023-02-15T18:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.