AtomThink: A Slow Thinking Framework for Multimodal Mathematical Reasoning
- URL: http://arxiv.org/abs/2411.11930v2
- Date: Fri, 22 Nov 2024 03:24:15 GMT
- Title: AtomThink: A Slow Thinking Framework for Multimodal Mathematical Reasoning
- Authors: Kun Xiang, Zhili Liu, Zihao Jiang, Yunshuang Nie, Runhui Huang, Haoxiang Fan, Hanhui Li, Weiran Huang, Yihan Zeng, Jianhua Han, Lanqing Hong, Hang Xu, Xiaodan Liang,
- Abstract summary: AtomThink is a framework for constructing long chains of thought (CoT) in a step-by-step manner, guiding MLLMs to perform complex reasoning.
AtomMATH is a large-scale multimodal dataset of long CoTs, and an atomic capability evaluation metric for mathematical tasks.
AtomThink significantly improves the performance of baseline MLLMs, achieving approximately 50% relative accuracy gains on MathVista and 120% on MathVerse.
- Score: 70.95645743670062
- License:
- Abstract: In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of ``slow thinking" into multimodal large language models (MLLMs). Contrary to existing methods that rely on direct or fast thinking, our key idea is to construct long chains of thought (CoT) consisting of atomic actions in a step-by-step manner, guiding MLLMs to perform complex reasoning. To this end, we design a novel AtomThink framework composed of three key modules: (i) a CoT annotation engine that automatically generates high-quality CoT annotations to address the lack of high-quality visual mathematical data; (ii) an atomic step fine-tuning strategy that jointly optimizes an MLLM and a policy reward model (PRM) for step-wise reasoning; and (iii) four different search strategies that can be applied with the PRM to complete reasoning. Additionally, we propose AtomMATH, a large-scale multimodal dataset of long CoTs, and an atomic capability evaluation metric for mathematical tasks. Extensive experimental results show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving approximately 50\% relative accuracy gains on MathVista and 120\% on MathVerse. To support the advancement of multimodal slow-thinking models, we will make our code and dataset publicly available on https://github.com/Quinn777/AtomThink.
Related papers
- Supervised Chain of Thought [5.389461633686935]
Chain of Thought (CoT) prompting offers a promising approach to solving complex reasoning tasks.
One-prompt-for-all approach poses significant challenges for models to generate the correct reasoning steps.
We show how task-specific supervision is essential for navigating the prompt space accurately and achieving optimal performance.
arXiv Detail & Related papers (2024-10-18T06:25:27Z) - A Notion of Complexity for Theory of Mind via Discrete World Models [2.487142846438629]
Theory of Mind (ToM) can be used to assess the capabilities of Large Language Models (LLMs) in complex scenarios where social reasoning is required.
This work proposes a framework inspired by cognitive load theory to measure the complexity of ToM tasks.
arXiv Detail & Related papers (2024-06-16T16:46:55Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - MMToM-QA: Multimodal Theory of Mind Question Answering [80.87550820953236]
Theory of Mind (ToM) is an essential ingredient for developing machines with human-level social intelligence.
Recent machine learning models, particularly large language models, seem to show some aspects of ToM understanding.
Human ToM, on the other hand, is more than video or text understanding.
People can flexibly reason about another person's mind based on conceptual representations extracted from any available data.
arXiv Detail & Related papers (2024-01-16T18:59:24Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
Large language models (LLMs) often struggle with tasks that require multi-step reasoning or goal-directed planning.
We propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of specialized modules.
We find that MAP yields significant improvements over both standard LLM methods.
arXiv Detail & Related papers (2023-09-30T00:10:14Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks.
Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes.
arXiv Detail & Related papers (2023-08-04T17:59:47Z) - Multimodal Chain-of-Thought Reasoning in Language Models [94.70184390935661]
We propose Multimodal-CoT that incorporates language (text) and vision (images) modalities into a two-stage framework.
Experimental results on ScienceQA and A-OKVQA benchmark datasets show the effectiveness of our proposed approach.
arXiv Detail & Related papers (2023-02-02T07:51:19Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.