Federated Contrastive Learning of Graph-Level Representations
- URL: http://arxiv.org/abs/2411.12098v1
- Date: Mon, 18 Nov 2024 22:10:31 GMT
- Title: Federated Contrastive Learning of Graph-Level Representations
- Authors: Xiang Li, Gagan Agrawal, Rajiv Ramnath, Ruoming Jin,
- Abstract summary: Federated Contrastive Learning of Graph-level Representations (FCLG)
This paper presents a new framework we refer to as Federated Contrastive Learning of Graph-level Representations (FCLG)
- Score: 10.092560681589577
- License:
- Abstract: Graph-level representations (and clustering/classification based on these representations) are required in a variety of applications. Examples include identifying malicious network traffic, prediction of protein properties, and many others. Often, data has to stay in isolated local systems (i.e., cannot be centrally shared for analysis) due to a variety of considerations like privacy concerns, lack of trust between the parties, regulations, or simply because the data is too large to be shared sufficiently quickly. This points to the need for federated learning for graph-level representations, a topic that has not been explored much, especially in an unsupervised setting. Addressing this problem, this paper presents a new framework we refer to as Federated Contrastive Learning of Graph-level Representations (FCLG). As the name suggests, our approach builds on contrastive learning. However, what is unique is that we apply contrastive learning at two levels. The first application is for local unsupervised learning of graph representations. The second level is to address the challenge associated with data distribution variation (i.e. the ``Non-IID issue") when combining local models. Through extensive experiments on the downstream task of graph-level clustering, we demonstrate FCLG outperforms baselines (which apply existing federated methods on existing graph-level clustering methods) with significant margins.
Related papers
- Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
We propose a novel self-supervised deep graph clustering method named Redundancy-Free Graph Clustering (R$2$FGC)
It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder.
Our experiments are performed on widely used benchmark datasets to validate the superiority of our R$2$FGC over state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-09T06:18:50Z) - Individual and Structural Graph Information Bottlenecks for
Out-of-Distribution Generalization [21.227825123510293]
We propose Individual Graph Information Bottleneck (I-GIB) and Structural Graph Information Bottleneck (S-GIB)
I-GIB discards irrelevant information by minimizing the mutual information between the input graph and its embeddings.
S-GIB simultaneously discards spurious features and learn invariant features from a high-order perspective.
arXiv Detail & Related papers (2023-06-28T03:52:41Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z) - Graph Classification by Mixture of Diverse Experts [67.33716357951235]
We present GraphDIVE, a framework leveraging mixture of diverse experts for imbalanced graph classification.
With a divide-and-conquer principle, GraphDIVE employs a gating network to partition an imbalanced graph dataset into several subsets.
Experiments on real-world imbalanced graph datasets demonstrate the effectiveness of GraphDIVE.
arXiv Detail & Related papers (2021-03-29T14:03:03Z) - Structured Graph Learning for Scalable Subspace Clustering: From
Single-view to Multi-view [28.779909990410978]
Graph-based subspace clustering methods have exhibited promising performance.
They still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data points.
We propose a scalable graph learning framework, seeking to address the above three challenges simultaneously.
arXiv Detail & Related papers (2021-02-16T03:46:11Z) - GraphFL: A Federated Learning Framework for Semi-Supervised Node
Classification on Graphs [48.13100386338979]
We propose the first FL framework, namely GraphFL, for semi-supervised node classification on graphs.
We propose two GraphFL methods to respectively address the non-IID issue in graph data and handle the tasks with new label domains.
We adopt representative graph neural networks as GraphSSC methods and evaluate GraphFL on multiple graph datasets.
arXiv Detail & Related papers (2020-12-08T03:13:29Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.