The Role of Accuracy and Validation Effectiveness in Conversational Business Analytics
- URL: http://arxiv.org/abs/2411.12128v3
- Date: Mon, 25 Nov 2024 10:14:53 GMT
- Title: The Role of Accuracy and Validation Effectiveness in Conversational Business Analytics
- Authors: Adem Alparslan,
- Abstract summary: This study examines conversational business analytics, an approach that utilizes AI to address the technical competency gaps that hinder end users effectively using traditional self-service analytics.
By facilitating natural language interactions, conversational business analytics aims to empower users to independently retrieve data and generate insights.
- Score: 0.0
- License:
- Abstract: This study examines conversational business analytics, an approach that utilizes AI to address the technical competency gaps that hinder end users from effectively using traditional self-service analytics. By facilitating natural language interactions, conversational business analytics aims to empower end users to independently retrieve data and generate insights. The analysis focuses on Text-to-SQL as a representative technology for translating natural language requests into SQL statements. Developing theoretical models grounded in expected utility theory, this study identifies the conditions under which conversational business analytics, through partial or full support, can outperform delegation to human experts. The results indicate that partial support, focusing solely on information generation by AI, is viable when the accuracy of AI-generated SQL queries leads to a profit that surpasses the performance of a human expert. In contrast, full support includes not only information generation but also validation through explanations provided by the AI, and requires sufficiently high validation effectiveness to be reliable. However, user-based validation presents challenges, such as misjudgment and rejection of valid SQL queries, which may limit the effectiveness of conversational business analytics. These challenges underscore the need for robust validation mechanisms, including improved user support, automated processes, and methods for assessing quality independent of the technical competency of end users.
Related papers
- Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance.
The model excelled in tasks requiring intricate reasoning and knowledge integration across various fields.
Overall results indicate significant progress towards artificial general intelligence.
arXiv Detail & Related papers (2024-09-27T06:57:00Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - BLADE: Benchmarking Language Model Agents for Data-Driven Science [18.577658530714505]
LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science.
We present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions.
arXiv Detail & Related papers (2024-08-19T02:59:35Z) - Domain Adaptable Prescriptive AI Agent for Enterprise [2.6207267039700888]
This work focuses on developing the proof-of-concept agent, PrecAIse, a domain-adaptable conversational agent equipped with a suite of causal and prescriptive tools.
The presented Natural Language User Interface (NLUI) enables users with limited expertise in machine learning and data science to harness prescriptive analytics in their decision-making processes.
arXiv Detail & Related papers (2024-07-29T23:00:32Z) - InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation [79.09622602860703]
We introduce InsightBench, a benchmark dataset with three key features.
It consists of 100 datasets representing diverse business use cases such as finance and incident management.
Unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics.
arXiv Detail & Related papers (2024-07-08T22:06:09Z) - Benchmarking Data Science Agents [11.582116078653968]
Large Language Models (LLMs) have emerged as promising aids as data science agents, assisting humans in data analysis and processing.
Yet their practical efficacy remains constrained by the varied demands of real-world applications and complicated analytical process.
We introduce DSEval -- a novel evaluation paradigm, as well as a series of innovative benchmarks tailored for assessing the performance of these agents.
arXiv Detail & Related papers (2024-02-27T03:03:06Z) - Collaborative business intelligence virtual assistant [1.9953434933575993]
This study focuses on the applications of data mining within distributed virtual teams through the interaction of users and a CBI Virtual Assistant.
The proposed virtual assistant for CBI endeavors to enhance data exploration accessibility for a wider range of users and streamline the time and effort required for data analysis.
arXiv Detail & Related papers (2023-12-20T05:34:12Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
We propose a framework relying solely on chat-based customer support interactions for predicting the recommendation decision of individual users.
For our case study, we analyzed a total number of 16.4k users and 48.7k customer support conversations within the financial vertical of a large e-commerce company in Latin America.
Our results show that, with respective feature interpretability, it is possible to predict the likelihood of a user to recommend a product or service, based solely on the message-wise sentiment evolution of their CS conversations in a fully automated way.
arXiv Detail & Related papers (2022-11-08T00:43:36Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.